Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 "dots"), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress.
The acrosome plays an important role in fertilization. This study was designed to examine the role and behavior of a molecule, equatorin (the antigenic molecule of the monoclonal antibody mMN9), localized at the equatorial segment of the acrosome. In vitro fertilization (IVF) investigation was conducted to examine the role of this molecule, by assessing the effect of mMN9 in TYH medium (a modified Krebs Ringer bicarbonate solution) containing mMN9 at 0 (control), 25, 50, and 100 microg/ml. Under these conditions, the IVF investigation was divided into two experiments: 1) the zona pellucida (zona)-intact experiment, in which capacitated sperm inseminated cumulus- and zona-intact oocytes; and 2) the zona-free experiment, in which acrosome-reacted sperm inseminated zona-free oocytes. It was found that mMN9 did not affect sperm motility, zona binding, or zona penetration, but it significantly inhibited fertilization, reducing the rates of pronucleus and two-cell embryo formation in both the zona-intact and zona-free oocyte experiments. In addition, when judged at 5 h after insemination in the zona-intact experiment, nearly half of the unfertilized oocytes had accumulated sperm in the perivitelline space (perivitelline sperm), and concurrently we confirmed by electron microscopy the presence of many unreleased cortical granules preserved beneath the oolemma, indicating no occurrence of sperm-oocyte fusion. Confocal laser scanning light microscopy with indirect immunofluorescence demonstrated that equatorin was localized at the equatorial segment in both capacitated and perivitelline sperm (acrosome-reacted sperm). These results suggest that equatorin that is preserved at the equatorial segment is involved in the process of sperm-oocyte fusion in mice.
MN9, a monoclonal antibody raised against mouse spermatozoa, specifically recognizes the equatorial segment of sperm head in several mammalian species, including humans. Colloidal gold-immuno-electron microscopy of mouse spermatozoa has shown that the antigen is localized in the space between the outer and inner acrosome membranes and on the acrosome membranes at the equatorial segment. Immunoblotting after electrophoresis of spermatozoa from the cauda epididymidis has identified two immunoreactive bands: 38 kDa and 48 kDa in mouse, and 48 kDa in rat. During spermiogenesis in rat, this antigen is transported to the equatorial segment via a unique pathway, first appearing in some cisternae of the endoplasmic reticulum and in the Golgi apparatus of spermatids at around step 3. The antigen can further be found on the vesicles at the trans-side of the Golgi apparatus, in the matrix of the head cap, and on the head cap membrane in step-4 to step-7 spermatids. The antigen appears to be concentrated at the equatorial segment during late spermiogenesis. Neither the (pro-)acrosomic granule nor the surrounding membrane are required in this pathway. This pathway can be termed the 'Golgi-head cap tract'.
The developing acrosome in spermatids contains pituitary adenylate cyclase-activating polypeptide (PACAP). However, the role of the acrosomal PACAP remains unclear because it has not been detected in mature spermatids and sperm. We reinvestigated whether the sperm acrosome contains PACAP. An antiserum produced against PACAP reacted to the anterior acrosome in epididymal sperm fixed under mild conditions, suggesting that PACAP acts on oocytes and/or cumulus cells at the site of fertilization. Immunolabeling and RT-PCR demonstrated the presence of PACAP type I receptor, a PACAP-specific receptor, in postovulatory cumulus cells. To investigate the role of PACAP in fertilization, we pretreated cumulus-oocyte complexes with the polypeptide. At a low concentration of sperm, the fertilization rate was significantly enhanced by PACAP in a dose-dependent manner. Sperm penetration through the oocyte investment, cumulus layer, and zona pellucida was also enhanced by PACAP. The enhancement was probably due to an enhancement in sperm motility and the zona-induced acrosome reaction, which were stimulated by a cumulus cell-releasing factor. Indeed, PACAP treatment increased the secretion of progesterone from the cumulus-oocyte complexes. These results strongly suggest that in response to PACAP, cumulus cells release a soluble factor that probably stimulates sperm motility and the acrosome reaction, thereby promoting fertilization.
In this study the role of two intra-acrosomal molecules, acrin 1 (MN7) and acrin 2 (MC41), during in vitro fertilization (IVF) was examined. The pertinent monoclonal antibodies mMN7 and mMC41 specifically recognize a 90 kDa protein (acrin 1) localized to the entire acrosome and a 200 kDa protein (acrin 2) localized to the cortex region of the anterior acrosome, respectively. Experiments were designed to assess the effects of mMN7 and mMC41 on fertilization in mice using TYH medium containing mMN7 or mMC41 at 0.0, 0.025, 0.05 and 0.1 mg ml-1. Under these conditions, capacitated spermatozoa inseminated the cumulus-invested oocytes. Acrosome-reacted spermatozoa inseminated the zona pellucida-free oocytes. The antibodies had no effect on sperm motility and primary binding to the zona pellucida, but significantly inhibited the rate of fertilization of zona pellucida-intact oocytes in a dose-dependent manner. A significantly small number of spermatozoa remained attached to the zona pellucida at 5 h after insemination in the presence of mMC41. mMC41 and mMN7 antibodies did not affect the fertilization rate of zona pellucida-free oocytes. Confocal laser scanning microscopy with indirect immunofluorescence traced the effect of the monoclonal antibodies on the zona pellucida-induced acrosome reaction, and revealed that mMN7 prevented completion of acrosomal matrix dispersal, whereas mMC41 did not affect the acrosome reaction. mMC41 appeared to inhibit secondary binding or some biochemical steps on the zona pellucida after the acrosome reaction but before penetration of the zona pellucida. Thus, the intra-acrosomal antigenic molecules acrin 1 and acrin 2 are essential for distinct events before sperm penetration of the zona pellucida in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.