Waardenburg syndrome type 2 (WS2) is an autosomal dominant disorder characterized by a combination of pigmentary and auditory abnormalities. Approximately 20% of WS2 cases are associated with mutations in the gene encoding microphthalmia-associated transcription factor (MITF). MITF plays a critical role in the development of both neural-crest-derived melanocytes and optic cup-derived retinal pigmented epithelium (RPE); the loss of a functional Mitf in mice results in complete absence of all pigment cells, which in turn induces microphthalmia and inner ear deafness. The black-eyed white Mitf mi-bw homozygous mouse normally has a pigmented RPE but lacks melanocytes essential for the pigmentation of the body and hearing. We show here that Mitf mi-bw is caused by an insertion into intron 3 of a 7.2 kb novel L1 element, L1bw, which belongs to an actively retrotransposing TF subfamily. The L1bw insertion reduces the amount of mRNAs for two Mitf isoforms, Mitf-A and Mitf-H, by affecting their overall expression levels and pre-mRNA splicing patterns, while it abolishes mRNA expression of another isoform, Mitf-M, which is specifically expressed in neural-crest-derived melanocytes. The consequence of the L1 insertion in the black-eyed white Mitf mi-bw mouse is that the developmental programme for RPE cells proceeds normally, most likely because of the presence of residual, full-length Mitf-A and Mitf-H proteins, whereas the lack of Mitf-M results in loss of the melanocyte population. The results suggest that melanocyte development depends critically on a single Mitf isoform, Mitf-M, and raise the possibility that specific mutations affecting MITF-M, the human equivalent of Mitf-M, may be responsible for a subset of WS2 conditions.
The organ-specific and temporal control of gene activation/inactivation is a key issue in the understanding of protein function during normal and pathological development and during oncogenesis. We generated transgenic mice bearing a tamoxifen-dependent Cre recombinase (Tyr::Cre-ERT2) gene expressed under the control of a 6.1 kb murine tyrosinase promoter in order to facilitate targeted spatiotemporally controlled somatic recombination in melanoblasts/melanocytes. Cre-ERT2 production was detected in tissues containing melanocytes. After tamoxifen induction at various times during embryogenesis and adulthood in a Cre-responsive reporter mouse strain, genetic recombination was detected in the melanoblasts and melanocytes of the skin. Thus, the Tyr::Cre-ERT2 transgenic mice provides a valuable tool for following this cell lineage and for investigating gene function in melanocyte development and transformation.
Cutaneous malignant melanoma is one of the most serious skin cancers and is highly invasive and markedly resistant to conventional therapy. Melanomagenesis is initially triggered by environmental agents including ultraviolet (UV), which induces genetic/epigenetic alterations in the chromosomes of melanocytes. In human melanomas, the RAS/RAF/MEK/ERK (MAPK) and the PI3K/PTEN/AKT (AKT) signaling pathways are two major signaling pathways and are constitutively activated through genetic alterations. Mutations of RAF, RAS, and PTEN contribute to antiapoptosis, abnormal proliferation, angiogenesis, and invasion for melanoma development and progression. To find better approaches to therapies for patients, understanding these MAPK and AKT signaling mechanisms of melanoma development and progression is important. Here, we review MAPK and AKT signaling networks associated with melanoma development and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.