Cutaneous malignant melanoma is one of the most serious skin cancers and is highly invasive and markedly resistant to conventional therapy. Melanomagenesis is initially triggered by environmental agents including ultraviolet (UV), which induces genetic/epigenetic alterations in the chromosomes of melanocytes. In human melanomas, the RAS/RAF/MEK/ERK (MAPK) and the PI3K/PTEN/AKT (AKT) signaling pathways are two major signaling pathways and are constitutively activated through genetic alterations. Mutations of RAF, RAS, and PTEN contribute to antiapoptosis, abnormal proliferation, angiogenesis, and invasion for melanoma development and progression. To find better approaches to therapies for patients, understanding these MAPK and AKT signaling mechanisms of melanoma development and progression is important. Here, we review MAPK and AKT signaling networks associated with melanoma development and progression.
Various environmental and genetic factors affect the development and progression of skin cancers including melanoma. Melanoma development is initially triggered by environmental factors including ultraviolet (UV) light, and then genetic/epigenetic alterations occur in skin melanocytes. These first triggers alter the conditions of numerous genes and proteins, and they induce and/or reduce gene expression and activate and/or repress protein stability and activity, resulting in melanoma progression. Microphthalmia-associated transcription factor (MITF) is a master regulator gene of melanocyte development and differentiation and is also associated with melanoma development and progression. To find better approaches to molecular-based therapies for patients, understanding MITF function in skin melanoma development and progression is important. Here, we review the molecular networks associated with MITF in skin melanoma development and progression.
Deltex-3-like (DTX3L), an E3 ligase, is a member of the Deltex (DTX) family and is also called B-lymphoma and BAL-associated protein (BBAP). Previously, we established RFP/RET-transgenic mice, in which systemic hyperpigmented skin, benign melanocytic tumor(s) and melanoma(s) develop stepwise. Here we showed that levels of Dtx3l/DTX3L in spontaneous melanoma in RFP/RET-transgenic mice and human melanoma cell lines were significantly higher than those in benign melanocytic cells and primarily cultured normal human epithelial melanocytes, respectively. Immunohistochemical analysis of human tissues showed that more than 80% of the melanomas highly expressed DTX3L. Activity of FAK/PI3K/AKT signaling, but not that of MEK/ERK signaling, was decreased in Dtx3l/DTX3L-depleted murine and human melanoma cells. In summary, we demonstrated not only increased DTX3L level in melanoma cells but also DTX3L-mediated regulation of invasion and metastasis in melanoma through FAK/PI3K/AKT but not MEK/ERK signaling. Our analysis in human BRAFV600E inhibitor-resistant melanoma cells showed about 80% decreased invasion in the DTX3L-depleted cells compared to that in the DTX3L-intact cells. Thus, DTX3L is clinically a potential therapeutic target as well as a potential biomarker for melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.