OBJECTIVES: Proton pump inhibitors (PPIs) are often used in pediatrics to treat common gastrointestinal disorders, and there are growing concerns for infectious adverse events. Because CYP2C19 inactivates PPIs, genetic variants that increase CYP2C19 function may decrease PPI exposure and infections. We tested the hypothesis that CYP2C19 metabolizer phenotypes are associated with infection event rates in children exposed to PPIs. METHODS: This retrospective biorepository cohort study included individuals aged 0 to 36 months at the time of PPI exposure. Respiratory tract and gastrointestinal tract infection events were identified by using International Classification of Diseases codes in the year after the first PPI mention. Variants defining CYP2C19 *2, *3, *4, *8, *9, and *17 were genotyped, and all individuals were classified as CYP2C19 poor or intermediate, normal metabolizers (NMs), or rapid or ultrarapid metabolizers (RM/UMs). Infection rates were compared by using univariate and multivariate analyses. RESULTS: In all, 670 individuals were included (median age 7 months; 44% girls). CYP2C19 NMs (n = 267; 40%) had a higher infection rate than RM/UMs (n = 220; 33%; median 2 vs 1 infections per person per year; P = .03). There was no difference between poor or intermediate (n = 183; 27%) and NMs. In multivariable analysis of NMs and RM/UMs adjusting for age, sex, PPI dose, and comorbidities, CYP2C19 metabolizer status remained a significant risk factor for infection events (odds ratio 0.70 [95% confidence interval 0.50-0.97] for RM/UMs versus NMs). CONCLUSIONS: PPI therapy is associated with higher infection rates in children with normal CYP2C19 function than in those with increased CYP2C19 function, highlighting this adverse effect of PPI therapy and the relevance of CYP2C19 genotypes to PPI therapeutic decisionmaking.
Although pharmacogenetic testing is becoming increasingly common across medical subspecialties, a broad range of utilization and implementation exists across pediatric centers. Large pediatric institutions that routinely use pharmacogenetics in their patient care have published their practices and experiences; however, minimal data exist regarding the full spectrum of pharmacogenetic implementation among children's hospitals. The primary objective of this nationwide survey was to characterize the availability, concerns, and barriers to pharmacogenetic testing in children's hospitals in the Children's Hospital Association. Initial responses identifying a contact person were received from 18 institutions. Of those 18 institutions, 14 responses (11 complete and 3 partial) to a more detailed survey regarding pharmacogenetic practices were received. The majority of respondents were from urban institutions (72%) and held a Doctor of Pharmacy degree (67%). Among all respondents, the three primary barriers to implementing pharmacogenetic testing identified were test reimbursement, test cost, and money. Conversely, the three least concerning barriers were potential for genetic discrimination, sharing results with family members, and availability of tests in certified laboratories. Low-use sites rated several barriers significantly higher than the high-use sites, including knowledge of pharmacogenetics (P = 0.03), pharmacogenetic interpretations (P = 0.04), and pharmacogenetic-based changes to therapy (P = 0.03). In spite of decreasing costs of pharmacogenetic testing, financial barriers are one of the main barriers perceived by pediatric institutions attempting clinical implementation. Low-use sites may also benefit from education/outreach in order to reduce perceived barriers to implementation.
Cytochrome P450 (CYP) enzymes are commonly involved in drug metabolism, and genetic variation in the genes encoding CYPs are associated with variable drug response. While genotype-guided therapy has been clinically implemented in adults, these associations are less well established for pediatric patients. In order to understand the frequency of pediatric exposures to drugs with known CYP interactions, we compiled all actionable drug–CYP interactions with a high level of evidence using Clinical Pharmacogenomic Implementation Consortium (CPIC) data and surveyed 10 years of electronic health records (EHR) data for the number of children exposed to CYP-associated drugs. Subsequently, we performed a focused literature review for drugs commonly used in pediatrics, defined as more than 5000 pediatric patients exposed in the decade-long EHR cohort. There were 48 drug–CYP interactions with a high level of evidence in the CPIC database. Of those, only 10 drugs were commonly used in children (ondansetron, oxycodone, codeine, omeprazole, lansoprazole, sertraline, amitriptyline, citalopram, escitalopram, and risperidone). For these drugs, reports of the drug–CYP interaction in cohorts including children were sparse. There are adequate data for implementation of genotype-guided therapy for children for three of the 10 commonly used drugs (codeine, omeprazole and lansoprazole). For the majority of commonly used drugs with known CYP interactions, more data are required to support pharmacogenomic implementation in children.
OBJECTIVES: To determine the association between cytochrome P450 2C19 (CYP2C19) metabolizer status and risk for escitalopram and citalopram, collectively termed (es)citalopram, and sertraline adverse events (AEs) in children. METHODS: In this retrospective cohort study, we used deidentified electronic health records linked to DNA. The cohort included children ≤18 years with ≥2 days of (es)citalopram or ≥7 days of sertraline exposure. The primary outcome was AEs assessed by manual chart review. CYP2C19 was genotyped for functional variants (*2, *3, *4, *6, *8, and *17), and individuals were assigned metabolizer status. Association between AEs and metabolizer status was determined by using Cox regression adjusting for age, race, ethnicity, dose, and concomitant CYP2C19-inhibiting medications. RESULTS: The cohort included 249 sertraline-exposed and 458 (es)citalopram-exposed children, with a median age of 14.2 years (interquartile range 11.2–16.2) and 13.4 years (interquartile range 10.1–15.9), respectively. Sertraline AEs were more common in normal metabolizers (NMs) compared to poor metabolizers (PMs) or intermediate metabolizers (IMs) (hazard ratio [HR] 1.8; 95% confidence interval [CI] 1.01–3.2; P = .047) in unadjusted analysis and after adjustment (HR 1.9; CI 1.04–3.4; P = .04). For (es)citalopram, more AEs were observed in NMs than PMs and IMs without statistically significant differences (unadjusted HR 1.6; CI 0.95-2.6; P = .08; adjusted HR 1.6; CI 0.95-2.6; P = .08). CONCLUSIONS: In contrast to adults, in our pediatric cohort, CYP2C19 NMs experienced increased sertraline AEs than PMs and IMs. (Es)citalopram AEs were not associated with CYP2C19 status in the primary analysis. The mechanism underlying this pediatric-specific finding is unknown but may be related to physiologic differences of adolescence. Further research is required to inform genotype-guided prescribing for these drugs in children.
Objective: To determine the association between genetic variants reported to affect risperidone and adverse events (AEs) in children and adolescents. Methods: Individuals aged 18 years or younger with ≥4 weeks of risperidone exposure in a deidentified DNA biobank were included. The primary outcome was AE frequency as a function of genotype. Individuals were classified according to metabolizer status for CYP2D6, CYP3A4, and CYP3A5; wild type, heterozygote, or homozygote for specific single nucleotide variants for DRD2, DRD3, HTR2A, and HTR2C; and wild type versus nonwild type for multiple uncommon variants in ABCG2, ABCB1, and HTR2C. Tests of association of each classification to AEs were performed using a Fisher exact test and logistic regression, and statistically significant classifications were included in a final logistic regression. Results: The final cohort included 257 individuals. AEs were more common in CYP2D6 poor/intermediate metabolizers (PMs/IMs) than normal/rapid/ultrarapid metabolizers (NMs/RMs/UMs) in univariate and multivariate analysis. HTR2A-rs6311 heterozygotes and homozygotes had fewer AEs than wild types in logistic regression but not in univariate analysis. In the final multivariable model adjusting for age, race, sex, and risperidone dose, AEs were associated with CYP2D6 (adjusted odds ratio [AOR] 2.6, 95% CI 1.1–5.5, for PMs/IMs vs. NMs/RMs/UMs) and HTR2A-rs6311 (AOR 0.6, 95% CI 0.4–0.9, for each variant allele), both consistent with previous studies. Conclusion: Children and adolescents who are CYP2D6 PMs/IMs may have an increased risk for risperidone AEs. Of the genes and variants studied, only CYP2D6 has consistent association and sufficient data for clinical use, whereas HTR2A-rs6311 has limited data and requires further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.