OBJECTIVES: To determine the association between cytochrome P450 2C19 (CYP2C19) metabolizer status and risk for escitalopram and citalopram, collectively termed (es)citalopram, and sertraline adverse events (AEs) in children. METHODS: In this retrospective cohort study, we used deidentified electronic health records linked to DNA. The cohort included children ≤18 years with ≥2 days of (es)citalopram or ≥7 days of sertraline exposure. The primary outcome was AEs assessed by manual chart review. CYP2C19 was genotyped for functional variants (*2, *3, *4, *6, *8, and *17), and individuals were assigned metabolizer status. Association between AEs and metabolizer status was determined by using Cox regression adjusting for age, race, ethnicity, dose, and concomitant CYP2C19-inhibiting medications. RESULTS: The cohort included 249 sertraline-exposed and 458 (es)citalopram-exposed children, with a median age of 14.2 years (interquartile range 11.2–16.2) and 13.4 years (interquartile range 10.1–15.9), respectively. Sertraline AEs were more common in normal metabolizers (NMs) compared to poor metabolizers (PMs) or intermediate metabolizers (IMs) (hazard ratio [HR] 1.8; 95% confidence interval [CI] 1.01–3.2; P = .047) in unadjusted analysis and after adjustment (HR 1.9; CI 1.04–3.4; P = .04). For (es)citalopram, more AEs were observed in NMs than PMs and IMs without statistically significant differences (unadjusted HR 1.6; CI 0.95-2.6; P = .08; adjusted HR 1.6; CI 0.95-2.6; P = .08). CONCLUSIONS: In contrast to adults, in our pediatric cohort, CYP2C19 NMs experienced increased sertraline AEs than PMs and IMs. (Es)citalopram AEs were not associated with CYP2C19 status in the primary analysis. The mechanism underlying this pediatric-specific finding is unknown but may be related to physiologic differences of adolescence. Further research is required to inform genotype-guided prescribing for these drugs in children.
Pharmacogenetic testing for psychiatry is growing at a rapid pace, with multiple sites utilizing results to help clinical decision‐making. Genotype‐guided dosing and drug selection have been implemented at several sites, including Vanderbilt University Medical Center, where clinical decision support (CDS) based on pharmacogenetic results went live for selective serotonin reuptake inhibitors in 2020 for both adult and pediatric patients. Effective and appropriate implementation of CYP2D6‐ and CYP2C19‐guided CDS for the pediatric population requires consideration of the evidence for the pharmacogenetic associations, medication indications, and appropriate alternative therapies to be used when a pharmacogenetic contraindication is identified. In this article, we review these pediatric pharmacogenetic considerations for selective serotonin reuptake inhibitor CDS. We include a case study, the current literature supporting clinical recommendations, considerations when designing pediatric CDS, future implications, and examples of sertraline, (es)citalopram, paroxetine, and fluvoxamine alerts.
Objective: To determine the association between genetic variants reported to affect risperidone and adverse events (AEs) in children and adolescents. Methods: Individuals aged 18 years or younger with ≥4 weeks of risperidone exposure in a deidentified DNA biobank were included. The primary outcome was AE frequency as a function of genotype. Individuals were classified according to metabolizer status for CYP2D6, CYP3A4, and CYP3A5; wild type, heterozygote, or homozygote for specific single nucleotide variants for DRD2, DRD3, HTR2A, and HTR2C; and wild type versus nonwild type for multiple uncommon variants in ABCG2, ABCB1, and HTR2C. Tests of association of each classification to AEs were performed using a Fisher exact test and logistic regression, and statistically significant classifications were included in a final logistic regression. Results: The final cohort included 257 individuals. AEs were more common in CYP2D6 poor/intermediate metabolizers (PMs/IMs) than normal/rapid/ultrarapid metabolizers (NMs/RMs/UMs) in univariate and multivariate analysis. HTR2A-rs6311 heterozygotes and homozygotes had fewer AEs than wild types in logistic regression but not in univariate analysis. In the final multivariable model adjusting for age, race, sex, and risperidone dose, AEs were associated with CYP2D6 (adjusted odds ratio [AOR] 2.6, 95% CI 1.1–5.5, for PMs/IMs vs. NMs/RMs/UMs) and HTR2A-rs6311 (AOR 0.6, 95% CI 0.4–0.9, for each variant allele), both consistent with previous studies. Conclusion: Children and adolescents who are CYP2D6 PMs/IMs may have an increased risk for risperidone AEs. Of the genes and variants studied, only CYP2D6 has consistent association and sufficient data for clinical use, whereas HTR2A-rs6311 has limited data and requires further study.
Tweetable abstract High-quality studies examining the influence of CYP2D6 on the exposure and tolerability of antipsychotics in youth are needed to mitigate the limitations of prior studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.