The requirements of running a 2 hour marathon have been extensively debated but the actual physiological demands of running at ~21.1 km/h have never been reported. We therefore conducted laboratory-based physiological evaluations and measured running economy (O2 cost) while running outdoors at ~21.1 km/h, in world-class distance runners as part of Nike's 'Breaking 2' marathon project. On separate days, 16 male distance runners (age, 29 ± 4 years; height, 1.72 ± 0.04 m; mass, 58.9 ± 3.3 kg) completed an incremental treadmill test for the assessment of V̇O2peak, O2 cost of submaximal running, lactate threshold and lactate turn-point, and a track test during which they ran continuously at 21.1 km/h. The laboratory-determined V̇O2peak was 71.0 ± 5.7 ml/kg/min with lactate threshold and lactate turn-point occurring at 18.9 ± 0.4 and 20.2 ± 0.6 km/h, corresponding to 83 ± 5 % and 92 ± 3 % V̇O2peak, respectively. Seven athletes were able to attain a steady-state V̇O2 when running outdoors at 21.1 km/h. The mean O2 cost for these athletes was 191 ± 19 ml/kg/km such that running at 21.1 km/h required an absolute V̇O2 of ~4.0 L/min and represented 94 ± 3 % V̇O2peak. We report novel data on the O2 cost of running outdoors at 21.1 km/h, which enables better modelling of possible marathon performances by elite athletes. Using the value for O2 cost measured in this study, a sub-2 hour marathon would require a 59 kg runner to sustain a V̇O2 of approximately 4.0 L/min or 67 ml/kg/min.
A 3-min all-out exercise test (3 MT) estimates critical power and the curvature constant for cycle ergometry validly; however, the mode of running has not been studied. We examined the efficacy of a running 3 MT, using global positioning sensor data, to predict outdoor racing performance. Women distance runners (n=14) were tested at preseason within a month prior to competing officially in either short or middle distance races. Critical speed (CS) (4.46±0.41 m/s) estimated from the 3 MT did not differ (p>0.05) from the mean speed of gas exchange threshold and maximum oxygen uptake (50%Δ), as derived from a custom treadmill graded exercise test (4.55±0.24 m/s). Runners with higher curvature constants (D'), estimated from the 3 MT, raced at higher speeds above CS (R2 ranging 0.63-0.99). Race speeds for 800 m exceeded the speed for 150 s of all-out running, rendering 800 m estimates less accurate. Conversely, predicted times for the other distances yielded strong intraclass correlations (α) and low coefficients of variation (%) values (α=0.74/1.7% and α=0.87/2.1%, for 1 600 and 5 000 m, respectively). Use of the running 3 MT for performances ranging ~2.5-18 min is recommended.
The critical velocity (CV) model offers an opportunity to prescribe and to test empirically different velocity-time (V-t) configurations of high-intensity interval training (HIIT); however, such experiments are lacking. We evaluated a group of competitive, female soccer players (age = 19 ± 1 years, height = 168 ± 6 cm, mass = 61 ± 6 kg) completing 1 of 2 different HIIT regimes: a short group (n = 6) completing higher V and shorter t configurations, and a long group (n = 10) completing lower V, longer t configurations. Both groups trained 2 d·wk for 4 weeks. For each workout, both groups ran at velocities exceeding CV and designed to deplete identical fractional percentages of the finite work capacity above CV (D'). The metrics of CV and D' were evaluated at pretraining and posttraining using the 3-minute all-out exercise test on an indoor track using video digitizing of displacement relative to time. Despite differences in the V-t configurations, both groups increased their CV (+0.22 m·s, +6%) and decreased their D' (-24 m, -13%; p < 0.05). We conclude that 2- to 5-minute HIIT bouts are suitable for increasing CV, in previously trained athletes, but they result in a decline of D'. To increase D', we suggest examining HIIT of intensities that are <2 minutes and >130% of maximum oxygen uptake.
The EP and WEP may be reliably determined after 2-h heavy-intensity exercise. The 8% and 20% reductions in EP and WEP, respectively, have important implications for performance during endurance exercise. The physiological characterization of EP (and, by extension, CP) may differ in a fatigued compared with a rested state.
We tested the hypotheses that the parameters of the power-duration relationship, estimated as the end-test power (EP) and work done above EP (WEP) during a 3-min all-out exercise test (3MT), would be reduced progressively after 40 min, 80 min, and 2 h of heavy-intensity cycling and that carbohydrate (CHO) ingestion would attenuate the reduction in EP and WEP. Sixteen participants completed a 3MT without prior exercise (control), immediately after 40 min, 80 min, and 2 h of heavy-intensity exercise while consuming a placebo beverage, and also after 2 h of heavy-intensity exercise while consuming a CHO supplement (60 g/h CHO). There was no difference in EP measured without prior exercise (260 ± 37 W) compared with EP after 40 min (268 ± 39 W) or 80 min (260 ± 40 W) of heavy-intensity exercise; however, after 2 h EP was 9% lower compared with control (236 ± 47 W; P < 0.05). There was no difference in WEP measured without prior exercise (17.9 ± 3.3 kJ) compared with after 40 min of heavy-intensity exercise (16.1 ± 3.3 kJ), but WEP was lower ( P < 0.05) than control after 80 min (14.7 ± 2.9 kJ) and 2 h (13.8 ± 2.7 kJ). Compared with placebo, CHO ingestion negated the reduction of EP following 2 h of heavy-intensity exercise (254 ± 49 W) but had no effect on WEP (13.5 ± 3.4 kJ). These results reveal a different time course for the deterioration of EP and WEP during prolonged endurance exercise and indicate that EP is sensitive to CHO availability. NEW & NOTEWORTHY The parameters of the power-duration relationship [critical power (CP) and the curvature constant (W′)] have typically been considered to be static. Here we report the time course for reductions in CP and W′, as estimated with the 3-min all-out cycle test, during 2 h of heavy-intensity exercise. We also show that carbohydrate ingestion during exercise preserves CP, but not W′, without altering muscle glycogen depletion. These results provide new mechanistic and practical insight into the power-duration curve and its relationship to exercise-related fatigue development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.