Study of a Holocene fan delta in Adventfjorden, Spitsbergen, provides new insight into the nature of high‐arctic coastal sedimentation and deglaciation dynamics. The fjord‐side, gravelly Gilbert‐type fan delta began to form at the local marine limit c. 10 ka BP, supplied seasonally with sediment by meltwater from a cirque glacier left behind by the retreating Late Weichselian ice sheet. Relative sea level had fallen by 63 m, and the fan delta reached a radius of c. 1 km by 6 ka BP, when the relic glacier eventually melted down and fluvial activity declined. A strong influence of marine processes is recorded by the fan‐delta foreset facies, overlain by alluvium. Supplied with sediment by longshore drift, the fan‐delta front continued to advance at a lower rate, while relative sea level fell further by 5 m and ceased to fall around 5·4 ka BP. The following transgression was countered by longshore sediment supply until 4·7 ka BP, when the delta‐front beach aggraded and a spit platform began to climb onto the delta plain, recording a relative sea‐level rise of 4 m. The subsequent regression was initially non‐depositional, with the relative sea level falling by > 4 m in 200 years, outpacing fluvial supply, and the re‐emerging fan delta being swept by longshore currents. A regressive beach began to form c. 4·3 ka BP, while relative sea level gradually reached its present‐day position. The feeder braided stream was wandering across the delta plain during this time, but incised once the fan‐delta shoreline began to retreat by wave erosion and turned into a receding modern escarpment. The stream has since been adjusting its profile by gradually eroding the pre‐existing alluvium and distributing the coarse sediment supplied from catchment slopes by debrisflows and snow avalanches. Modern snowflows have also spread debris onto the abandoned fan surface. The erosional retreat of the fan delta has been accompanied by lateral shoreline accretion on both its sides. The study has important regional implications and demonstrates that Holocene fan deltas can provide a valuable record of the deglaciation history in high‐arctic terrains, where glacial deposits are scarcely preserved on land.
Most scientists have concluded previously that the west coast of Spitsbergen, Svalbard, remained ice-free during the late Weichselian, between 25,000 and 10,000 yr B.P. We conclude that the glaciation was more extensive. Terraces that were postulated to have been ice-free are covered by a thin, late Weichselian till. Sudden drop in the marine limit and basal radiocarbon dates of raised glaciomarine sediments demonstrates that the glaciers in the main fjords, Isfjorden and Van Mijenfjorden, terminated west (outside) of the fjord mouths. Basal radiocarbon dates from glaciomarine clay above till in cores from the continental shelf west of Spitsbergen yielded ages of about 12,500 yr B.P., from which we conclude that the ice extended to the shelf edge. Based on the extent of amino acid diagenesis in radiocarbon-dated molluscs, the duration of the maximum extension of the late Weichselian glaciation was short, certainly less than 10,000 years. During the ice-free period preceding that glaciation, at least back to 40,000 yr B.P., the glaciers on Svalbard were not significantly larger than at present, as shown by marine deposits close to the glacier snouts. Many radiocarbon dates place deglaciation of the outer coast at about 12,500 yr B.P. At about 10,000 yr B.P., the rest of the archipelago rapidly became ice-free.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.