Being the prevailing approach for producing esters such as butyl butyrate, the use of chemical route has been linked to numerous disadvantages. Hence, a green alternative method for higher yield production of butyl butyrate by esterification reaction utilizing Novozyme 435 as biocatalysts in a solvent-less system may prove useful. Such approach can be further improved by optimizing the relevant reaction parameters using the Response Surface Methodology by the Box-Benkhen Design attempted in this present study. The reaction parameters evaluated were: substrate molar ratio, time and temperature, and the response of each parameter was measured as percentage conversion yield. Using the Design Expert 7.1.6 optimization functions, the two sets of optimum conditions selected viz. [i] molar ratio butyric acid:butanol 1:3.93, 9.93 h at 56.09°C and [ii] molar ratio butyric acid:butanol 1:3.35, 9.79 h at 53.90°C had afforded the highest yield of butyl butyrate i.e. 99.62% and 99.55%, respectively. The ester product obtained from the reaction were confirmed as butyl butyrate by FTIR and GC. Therefore, the results substantiated the applicability of the RSM prediction technique as well as efficacy of Novozyme 435 as biocatalysts in the high yield solvent-less synthesis of butyl butyrate, adhering to the philosophy of Green Chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.