<p>Heavy metal wastes cause water pollution. One of them is very toxic arsenic heavy metal waste; thus, treating them before they are released freely into the waters is necessary. In this case, the manufacture of carbon nanofibers (CNF) from sugar palm fiber waste is an innovation that can produce adsorbents to remediate heavy metals, thereby increasing the use value of sugar palm fiber waste. Carbon nanofiber from palm fiber (<em>Arenga pinnata</em>) was modified with ZnO metal, with varying concentrations of 0.1%, 1%, and 10%, in 1 gram of carbon nanofiber. Carbon nanofibers were made by carbonizing sugar palm fibers at 300<sup>o</sup>C for two hours. Furthermore, wet impregnation was carried out with Zn(CH<sub>3</sub>COO)<sub>2</sub>.2H<sub>2</sub>O and ended with calcination at 250<sup>o</sup>C for an hour, resulting in black nanofiber powder. This research was conducted to determine the effect of ZnO concentration on the characteristics of the carbon nanofiber produced and its effectiveness in remediating heavy metal arsenic. The ZnO/carbon nanofiber adsorbent material was then characterized using FTIR, XRD, and SEM analyses. Determination of the absorption of ZnO/carbon nanofibers on heavy metal arsenic was also assessed employing AAS analysis.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.