Herpesviruses (HVs) (Alpha- and Gammaherpesvirinae subfamilies) have been detected in several species of cetaceans with different pathological implications. However, available information on their presence in beaked whales (BWs) is still scarce. In this study, a total of 55 BWs (35 Ziphius cavirostris and 20 animals belonging to the Mesoplodon genus) were analyzed. Samples (n = 294) were obtained from BWs stranded along the coasts of the Canary Islands (1990–2017). Molecular detection of HV was performed by means of a conventional nested PCR based on the DNA polymerase gene. Herpesvirus was detected in 14.45% (8/55) of the analyzed BWs, including 2 positive animals from a previous survey. A percentage positivity of 8.57% was found within the Cuvier’s BW group, while the percentage of positivity rose to 25% within the Mesoplodon genus group (three M. densirostris, one M. europaeus, and one M. bidens). All the obtained sequences from this study belonged to the Alphaherpesvirinae subfamily, from which three are considered novel sequences, all of them within the Mesoplodon genus group. In addition, to our knowledge, this is the first description of HV infection in Gervais’ and Sowerby’s BWs. Three out of eight HV-positive BWs displayed histopathological lesions indicative of active viral replication.
BackgroundBrucella spp. isolation is increasingly reported in cetaceans, although associated pathologies, including lesions of the musculoskeletal and nervous systems, are less frequently described. Concerning the nervous system, Brucella sp. infection causing meningitis, meningoencephalitis or meningoencephalomyelitis have been extensively reported in striped dolphins (Stenella coeruleoalba), and less frequently in other cetacean species.Case presentationA juvenile female common bottlenose dolphin (Tursiops truncatus) was found stranded alive in Lanzarote (Canary Islands, Spain) in 2005, but died shortly after. On physical examination, the dolphin showed a moderate body condition and was classified as code 2 (fresh dead) at the time of necropsy. The main gross findings were severe multiorgan parasitism, thickened and congested leptomeninges, and (sero)fibrino-suppurative and proliferative arthritis of the shoulder joint. Histopathological examination revealed the distinct features of a sub-acute systemic disease associated with Cetacean Morbillivirus (CeMV) infection. However, brain lesions diverged from those reported in systemic CeMV infection. This led to suspect that there was a coinfecting pathogen, based on the characteristics of the inflammatory response and the lesion distribution pattern in the central nervous system. Brucella sp. was detected in the brain tissue by PCR and Brucella antigen was demonstrated by immunohistochemistry in the brain and shoulder joint lesions.ConclusionsThe zoonotic potential of marine mammal strains of Brucella has been demonstrated both in natural and laboratory conditions. In this study, PCR detected Brucella sp. in the brain of a common bottlenose dolphin stranded in the Canary Islands; the dolphin was also co-infected with CeMV. This is the first detection of Brucella sp. infection in a stranded cetacean in this archipelago. Therefore, we stress the importance of taking adequate measures during the handling of these species to prevent the transmissions of the infection to humans.
Estimating cetacean interactions with fishery activities is challenging. Bycatch and chronic entanglements are responsible for thousands of cetacean deaths per year globally. This study represents the first systematic approach to the postmortem investigation of fishery interactions in stranded cetaceans in the Canary Islands. We retrospectively studied 586 cases necropsied between January 2000 and December 2018. Of the cases with a known cause of death, 7.4% (32/453) were due to fishery interactions, and the Atlantic spotted dolphin (Stenella frontalis) was the most affected species [46.9% (15/32)]. Three types of fishery interactions were recognized by gross findings: bycatch [65.6% (21/32)], chronic entanglements [18.8% (6/32)], and fishermen aggression [15.6% (5/32)]. Among the bycaught cases, we differentiated the dolphins that died because of ingestion of longline hooks [23.8% (5/21)] from those that died because of fishing net entrapments [76.2% (16/21)], including dolphins that presumably died at depth due to peracute underwater entrapment (PUE) [37.5% (6/16)], dolphins that were hauled out alive and suffered additional trauma during handling [43.8% (7/16)], and those that were released alive but became stranded and died because of fishery interactions [18.7% (3/16)]. Gross and histologic findings of animals in each group were presented and compared. The histological approach confirmed gross lesions and excluded other possible causes of death. Cetaceans in good-fair body condition and shallow diving species were significantly more affected by fishery interactions, in agreement with the literature. Low rates of fishery interactions have been described, compared with other regions. However, within the last few years, sightings of entangled live whales, especially the minke whale (Balaenoptera acutorostrata) and Bryde's whale (B. edeni), have increased. This study contributes to further improvement of the evaluation of different types of fishery interactions and may facilitate the enforcement of future conservation policies to preserve cetacean populations in the Canary Islands.
The earliest evidence of cetacean morbillivirus (CeMV) infection dates from 1982, when the dolphin morbillivirus strain (DMV) was identified in bottlenose dolphins Tursiops truncatus stranded in the mid-Atlantic region. Since then, CeMV has been detected globally in at least 26 species of mysticetes and odontocetes, causing widespread mortality and a wide range of pathological effects. In the Canary Islands, DMV and pilot whale morbillivirus have been detected in cetacean species, including short-finned pilot whales Globicephala macrorhynchus and bottlenose dolphins. Risso's dolphins Grampus griseus have been reported year-round in waters of the Canary Islands and are considered a resident species. No information is currently available on CeMV prevalence in this species in this ocean region. We searched for evidence of CeMV infection in 12 Risso's dolphins stranded in the Canary Islands from 2003 to 2015 by means of histopathology, PCR and immunohistochemistry. PCR revealed 2 CeMV-positive animals (16.6%). Phylogenetic analysis showed that the strains from the 2 positive specimens were phylogenetically quite distant, proving that more than 1 strain infects the Risso's dolphin population in this region. We also determined that the strain detected in one of the specimens mainly circulated in the northeastern Atlantic Ocean from 2007 to 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.