Investigations aimed at defining the 3D configuration of eukaryotic chromosomes have consistently encountered an endogenous population of chromosome-derived circular genomic DNA, referred to as extrachromosomal circular DNA (eccDNA). While the production, distribution, and activities of eccDNAs remain understudied, eccDNA formation from specific regions of the linear genome has profound consequences on the regulatory and coding capabilities for these regions. Here, we define eccDNA distributions in Caenorhabditis elegans and in three human cell types, utilizing a set of DNA topology-dependent approaches for enrichment and characterization. The use of parallel biophysical, enzymatic, and informatic approaches provides a comprehensive profiling of eccDNA robust to isolation and analysis methodology. Results in human and nematode systems provide quantitative analysis of the eccDNA loci at both unique and repetitive regions. Our studies converge on and support a consistent picture, in which endogenous genomic DNA circles are present in normal physiological states, and in which the circles come from both coding and noncoding genomic regions. Prominent among the coding regions generating DNA circles are several genes known to produce a diversity of protein isoforms, with mucin proteins and titin as specific examples.
ENCODE 3 (2012-2017) expanded production and added new types of assays 8 (Fig. 1, Extended Data Fig. 1), which revealed landscapes of RNA binding and the 3D organization of chromatin via methods such as chromatin interaction analysis by paired-end tagging (ChIA-PET) and Hi-C chromosome conformation capture. Phases 2 and 3 delivered 9,239 experiments (7,495 in human and 1,744 in mouse) in more than 500 cell types and tissues, including mapping of transcribed regions and transcript isoforms, regions of transcripts recognized by RNA-binding proteins, transcription factor binding regions, and regions that harbour specific histone modifications, open chromatin, and 3D chromatin interactions. The results of all of these experiments are available at the ENCODE portal (http://www.encodeproject.org). These efforts, combined with those of related projects and many other laboratories, have produced a greatly enhanced view of the human genome (Fig. 2), identifying 20,225 protein-coding and 37,595 noncoding genes
An original signal extraction procedure is applied to database of 146 base nucleosome core DNA sequences from C. elegans (S. M. Johnson et al. Genome Research 16, 1505-1516, 2006). The positional preferences of various dinucleotides within the 10.4 base nucleosome DNA repeat are calculated, resulting in derivation of the nucleosome DNA bendability matrix of 16x10 elements. A simplified one-line presentation of the matrix ("consensus" repeat) is ...A(TTTCCGGAAA)T.... All 6 chromosomes of C. elegans conform to the bendability pattern. The strongest affinity to their respective positions is displayed by dinucleotides AT and CG, separated within the repeat by 5 bases. The derived pattern makes a basis for sequence-directed mapping of nucleosome positions in the genome of C. elegans. As the first complete matrix of bendability available the pattern may serve for iterative calculations of the species-specific matrices of bendability applicable to other genomic sequences.
Heat shock proteins (HSPs) provide a useful system for studying developmental patterns in the digenetic Leishmania parasites, since their expression is induced in the mammalian life form. Translation regulation plays a key role in control of protein coding genes in trypanosomatids, and is directed exclusively by elements in the 39 untranslated region (UTR). Using sequential deletions of the Leishmania Hsp83 39 UTR (888 nucleotides [nt]), we mapped a region of 150 nt that was required, but not sufficient for preferential translation of a reporter gene at mammalian-like temperatures, suggesting that changes in RNA structure could be involved. An advanced bioinformatics package for prediction of RNA folding (UNAfold) marked the regulatory region on a highly probable structural arm that includes a polypyrimidine tract (PPT). Mutagenesis of this PPT abrogated completely preferential translation of the fused reporter gene. Furthermore, temperature elevation caused the regulatory region to melt more extensively than the same region that lacked the PPT. We propose that at elevated temperatures the regulatory element in the 39 UTR is more accessible to mediators that promote its interaction with the basal translation components at the 59 end during mRNA circularization. Translation initiation of Hsp83 at all temperatures appears to proceed via scanning of the 59 UTR, since a hairpin structure abolishes expression of a fused reporter gene.
Nucleosome DNA bendability pattern extracted from large nucleosome DNA database of C. elegans is used for construction of full length (116 dinucleotide positions) nucleosome DNA bendability matrix. The matrix can be used for sequence-directed mapping of the nucleosomes on the sequences. Several alternative positions for a given nucleosome are typically predicted, separated by multiples of nucleosome DNA period. The corresponding computer program is successfully tested on best known experimental examples of accurately positioned nucleosomes. The uncertainty of the computational mapping is +/-1 base. The procedure is placed on publicly accessible server and can be applied to any DNA sequence of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.