We reviewed the results of 71 revisions of the acetabular component in total hip replacement, using impaction of bone allograft. The mean follow-up was 7.2 years (1.6 to 9.7). All patients were assessed according to the American Academy of Orthopedic Surgeons (AAOS) classification of bone loss, the amount of bone graft required, thickness of the graft layer, signs of graft incorporation and use of augmentation. A total of 20 acetabular components required re-revision for aseptic loosening, giving an overall survival of 72% (95% CI, 54.4 to 80.5). Of these failures, 14 (70%) had an AAOS type III or IV bone defect. In the failed group, poor radiological and histological graft incorporation was seen. These results suggest that impaction allografting in acetabular revision with severe bone defects may have poorer results than have previously been reported.
Accelerometers enable us to analyse gait outside conventional gait laboratories. Before these devices can be used in large scale studies and in clinical settings a thorough evaluation of their performance in different populations is required. The aim of this study was to present an acceleration-based reference database for healthy gait. The repeatability and inter-observer reliability of acceleration-based gait analysis was investigated. The sensitivity was tested on different age groups and the effect of gender was studied. A comprehensive set of gait parameters (i.e. cadence, speed, asymmetry and irregularity) were studied in 60 women and 60 men. Basic gait parameters showed high repeatability (VC(cadence) 1.51%, ICC(cadence) 0.996) and inter-observer reliability (ICC(cadence) 0.916), while asymmetry and irregularity showed lower repeatability (VC(asym) 47.88%, ICC(asym) 0.787) and inter-observer reliability (ICC(asym) 0.449). The effects of age and gender on gait parameters were found to be consistent with those reported in studies using other methodologies. These findings and the advantages of the device support the application of AGA for routine clinical use and in daily life.
An inertial measurement unit (IMU) allows kinematic evaluation of human motion with fewer operational constraints than a gold standard optoelectronic motion capture (MOCAP) system. The study's aim was to compare IMU and MOCAP measurements of dynamic pelvic orientation angles during different activities of daily life (ADL): gait, sit-to-stand (STS) transfers and block step-up (BS) transfers. A single IMU was attached onto the lower back in seventeen healthy participants (8F/9 M, age 19-31 years; BMI < 25) and optical skin markers were attached onto anatomical pelvic landmarks for MOCAP measurements. Comparisons between IMU and MOCAP by Bland-Altman plots demonstrated that measurements were between 2SD of the absolute difference and Pearson's correlation coefficients were between 0.85 and 0.94. Frontal plane pelvic angle estimations achieved a RMSE in the range of [2.7°-4.5°] and sagittal plane measurements achieved a RMSE in the range of [2.7°-8.9°] which were both lowest in gait. Waveform peak detection times demonstrated ICCs between 0.96 and 1.00. These results are in accordance to other studies comparing IMU and MOCAP measurements with different applications and suggest that an IMU is a valid tool to measure dynamic pelvic angles during various activities of daily life which could be applied to monitor rehabilitation in a wide variety of musculoskeletal disorders.
We have investigated the accuracy of the templating of digital radiographs in planning total hip replacement using two common object-based calibration methods with the ball placed laterally (method 1) or medially (method 2) and compared them with two non-object-based methods. The latter comprised the application of a fixed magnification of 121% (method 3) and calculation of magnification based on the object-film-distance (method 4). We studied the post-operative radiographs of 57 patients (19 men, 38 women, mean age 73 years (53 to 89)) using the measured diameter of the prosthetic femoral head and comparing it with the true value. Both object-based methods (1 and 2) produced large errors (mean/maximum: 2.55%/17.4% and 2.04%/6.46%, respectively). Method 3 applying a fixed magnification and method 4 (object-film-distance) produced smaller errors (mean/maximum 1.42%/5.22% and 1.57%/4.24%, respectively; p < 0.01). The latter results were clinically relevant and acceptable when planning was allowed to within one implant size. Object-based calibration (methods 1 and 2) has fundamental problems with the correct placement of the calibration ball. The accuracy of the fixed magnification (method 3) matched that of object-film-distance (method 4) and was the most reliable and efficient calibration method in digital templating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.