ABSTRAK ANALISIS ENERGI DAN EKSERGI PADA SISTEM HTGR SIKLUS TURBIN UAP. Reaktor tipe HTGR merupakan reaktor yang rencana akan dibangun sebagai Reaktor Daya Eksperimental (RDE) pertama di Indonesia. Reaktor HTGR merupakan reaktor dengan suhu pendingin keluar reaktor tinggi (686°C ~ 950°C), efisiensi termal tinggi serta mempunyai sistem keselamatan pasif dan melekat. Untuk mengetahui ketepatan efisiensi suatu pembangkit dipandang tidak cukup jika hanya mengacu pada efisiensi energi saja seperti yang didasarkan pada Hukum I Termodinamika, namun perlu dikombinasikan dengan pendekatan eksergi yang berdasarkan Hukum II Termodinamika. Karena itu, tujuan studi adalah melakukan analisis energi dan eksergi pada sistem HTGR siklus turbin uap untuk mengetahui kerugian/ kehilangan panas yang terjadi dalam komponen sistem pembangkit, sehingga dapat diketahui potensi-potensi kerugian dan dapat dilakukan perbaikan. Metodologi yang digunakan adalah perhitungan menggunakan program cycle tempo dengan input data dari reaktor HTR-10. Hasil studi analisis dan evaluasi terhadap ireversibilitas sistem reaktor HTGR menggunakan siklus turbin uap menunjukkan bahwa reaktor merupakan komponen yang paling tidak efisien diantara seluruh komponen yang ada dalam sistem. Hal ini disebabkan ireversibilitas yang terjadi dalam transfer energi hasil reaksi pembelahan ke pendingin helium. Pembangkit uap, turbin, kondensor, adalah komponen penyumbang kerugian terbesar berikutnya. Hasil studi juga menunjukkan bahwa efisiensi sistem HTGR siklus turbin uap mempunyai potensi besar untuk dilakukan perbaikan sehingga mampu memberikan efek yang signifikan terhadap perbaikan efisiensi sistem. Kata kunci: energi, eksergi, HTGR, analisis, turbin uap ABSTRACT ENERGY AND EXERGY ANALYSIS ON THE STEAM TURBINE CYCLE OF HTGR SYSTEM. HTGR type reactor is planned to be built reactors as the first Experimental Power Reactor (RDE) in Indonesia. HTGR tipe reactor is a reactor with a high reactor outlet temperature (~ 900 ° C), high thermal efficiency and also it have inherent and passive safety systems. To determine the accuracy of the efficiency of a power plant is not enough if it merely refers to the energy efficiency just as it is based on the first law of thermodynamics, but it needs to be combined with exergy approach that is based on the second law of thermodynamics. Therefore, the purpose of the study is to analyze the energy and exergy of HTGR-steam turbine cycle system to determine the loss / heat loss that occurs in the power system components, so it can be seen the potential loss and can be repaired. The methodology used is a calculation using the program cycle due to the data input of the HTR-10 reactor. The results of analysis and evaluation of the irreversibility of HTGR reactor system using a steam turbine cycle shows that the reactor is a component of the least efficient among all components in the system. This is due to the irreversibility of energy transfer that occurs in the cleavage reaction proceeds to the helium coolant. Steam generators, turbines, condensers, is a component of the next largest contributor kerugia. The study shows that the efficiency of the steam turbine cycle HTGR system has great potential to be improved so it can provide a significant effect on the improvement of the efficiency of the system. Keywords: energy, exergy, HTGR, analysis, steam turbine
Reaktor Riset Inovatif (RRI) merupakan jenis MTR (Material Testing Reactor) yang dipersiapkan ke depan sebagai desain reaktor baru. Daya RRI telah ditetapkan dari perhitungan neutronik dan termohidrolika teras yaitu 50 MW termal. Reaktor bertekanan 8 kgf/cm2 dan laju aliran massa pendingin primer 900 kg/s. Tantangan yang penting dalam menindak lanjuti desain reaktor ini adalah analisis desain pada sistem pendingin. Makalah ini bertujuan untuk menganalisis desain proses sistem pendingin utama reaktor RRI daya 50 MW (RRI-50) dengan menggunakan program Chemcad 6.1.4. Dalam analisis ini dilakukan perhitungan neraca massa dan energi (mass/energy balances) pada sistem pendingin primer dan sekunder sebagai pendingin utama. Masing-masing sistem pendingin tersebut terdiri dari 2 jalur beroperasi secara paralel dan 1 jalur redundansi. Disamping itu untuk desain termal unit komponen telah dianalisis dengan program RELAP5, frenchcreek dan Metoda Analitik. Hasil analisis yang diperoleh adalah desain diagram sistem pendingin yang mencakup data parameter entalpi, temperatur, tekanan dan laju aliran massa pendingin untuk masing-masing jalur. Adapun hasil desain unit komponen utama pada RRI-50 adalah tangki tunda dengan volume 51,5 m3, 2 unit pompa sentrifugal dan 1 unit pompa cadangan pada pendingin primer daya 141 kW/pompa dan pendingin sekunder daya 206 kW/pompa, 2 unit penukar panas tipe shell-tube dengan koefisien termal overall 1377 W/m2.oC dan 4 unit menara pendingin yang mampu melepaskan panas ke udara dengan desain temperatur approach 5,0 oC dan temperatur range 9,0 oC. Desain sistem pendingin reaktor RRI-50 ini telah menetapkan parameter operasi sistem pendingin yaitu temperatur, tekanan dan laju aliran massa pendingin dengan mempertimbangkan tuntutan aspek keselamatan teras reaktor sehingga desain temperatur maksimum pendingin masuk ke teras 44,5 oC. Kata kunci : RRI 50 MW, desain sistem pendingin, program Chemcad 6.1.4 Innovative Research Reactor RRI is a type of MTR (Material Testing Reactor), which is being prepared in the future as a design of new reactor. The power of RRI has been determined based on the core thermalhydraulic and neutronic calculation, which is 50 MWt. The reactor pressure is 8 kgf/cm 2 and coolant mass flow rate is 900 kg/s. The important challenge in the follow up of this reactor design is the design analysis of cooling system. The purpose of this study is to analyze the design of RRI reactor main coolant system at the power of 50 MWt (RRI-50) using ChemCAD 6.1.4. In this analysis the mass and energy balances at the primary and secondary cooling system are calculated as main coolant. Each of the cooling system consists of two lines operating in parallel and redundancy lines. Besides that, the thermal design of the component units have been analyzed using RELAP5, FrenchCreek and Analytical Methods. The analyses result obtained is a design of cooling system diagram which includes parameter of enthalpy, temperature, pressure and coolant mass flow rate of each line. Meanwhile, design result of main component unit are delay tank of 51.5 m3 volume, 2 unit centrifugal pumps and 1 unit stand-by pump for the primary coolant pump each of 141 kW power and secondary coolant pump each of 206 kW power, 2 unit of shell-tube heat exchanger with overall thermal coefficient of 1377 W/m2.oC and 4 unit cooling tower that capable to release the heat to the air at approach temperature of 5,0 oC and range temperature of 9,0 oC. design of reactor coolant system RRI-50 has decided the operating parameters of cooling system are temperature, pressure and mass flow rate by considering into the demands of the safety aspects of the reactor core therefore design of maximum coolant temperature to the reactor core is 44,5 oC. Keywords : RRI 50MW, design of cooling system, program Chemcad 6.1.4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.