Exposure of bacterial cells to temperature changes induces the synthesis of a set proteins. We investigated the control of expression of the cspA gene, coding for the major cold-shock protein of Escherichia coli. This protein was shown to be transiently induced upon shift to low temperature. We demonstrated that the cspA mRNA is extremely unstable at 37 degrees C with a half-life of approx. 10 s. Upon shift to 15 degrees C cspA mRNA becomes highly stable. This mRNA stability is transient and is lost once the cells are adapted to the low temperature. Transcription fusions of lacZ containing part or most of the cspA gene do not show the rapid degradation at high temperature. Our results suggest that mRNA stability plays a major role in the control of the cspA gene. The expression of cspA is also regulated, to a smaller extent, by the relative increase in transcription after transfer to low temperature. A model by which cspA mRNA is regulated in response to temperature shift is discussed.
A shift in growth temperature from 37 degrees C to 15 degrees C leads to a dramatic increase in the level of CspA, the major cold shock protein of Escherichia coli. To investigate the molecular basis of this induction, we considered the relevance of transcriptional and posttranscriptional controls by analyzing the steady-state levels of transcripts and the expression of reporter genes in cells carrying a set of cspA promoter fragments of variable length fused to lacZ or cat genes. We demonstrate that: (i) the core cspA promoter (from -40 to +16) responds to cold shock and a mutation at -36 increases the relative activity of the promoter at low temperature by threefold; (ii) the sequences upstream of -40 have a positive effect on expression at 37 degrees C, but no effect on the cold shock response; (iii) by virtue of their influence on mRNA stability, the downstream sequences (from +81 to +165) reduce expression at 37 degrees C and increase the intensity of the cold shock response; (iv) mutations in the GCACATCA and CCAAT motifs, present at +1/-4 and between the -10 and -35 elements, respectively, do not affect the cold shock response of the cspA promoter; (v) following cold shock, a modification of the protein synthetic machinery takes place that allows preferential translation of cspA mRNA relative to the non-cold shock cat and lacZ mRNAs. The quantitatively modest transcriptional activation shown by the core promoter of cspA following cold shock suggests that transcriptional activation can significantly contribute to cold shock induction only when coupled to posttranscriptional controls, such as alterations in mRNA stability and the translational apparatus.
Prostate-specific antigen (PSA) and human kallikrein 2 are closely related products of the human kallikrein genes KLK3 and KLK2, respectively. Both PSA and human kallikrein 2 are produced and secreted in the prostate and have important applications in the diagnosis of prostate cancer. We report here the identification of unusual mRNA splice variants of the KLK2 and KLK3 genes that result from inclusion of intronic sequences adjacent to the first exon. The novel proteins encoded by these transcripts, named PSA-linked molecule (PSA-LM) and hK2-linked molecule (K-LM), share only the signal peptide with the original protein product of the respective gene. The mature proteins are entirely different and bear no similarity to the kallikrein family or to other proteins in the databases. As is the case with PSA, PSA-LM is expressed in the secretory epithelial cells of the prostate and is up-regulated in response to androgenic stimulation. A similar pattern of expression is suggested for K-LM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.