Lithium mineralization is common in the Central Iberian Zone and, to a lesser extent, in the Galizia-Trás-OsMontes Zone of Spain and Portugal, occurring along a ∼500 km-long NNW-SSE striking belt. There are different styles of Li mineralization along this belt; they are mainly associated with aplite-pegmatite bodies and, to a much lesser extent, with veins of quartz and phosphate. Lithium mineralization in the Central Iberian Zone may be classified into four types: aplite-pegmatite dykes occurring in pegmatitic fields, Li mineralization associated with leucogranitic cupolas, beryl-phosphate pegmatites and quartz-montebrasite veins. The main Li minerals of these bodies include Li-mica, spodumene and/or petalite in the pegmatitic fields and leucogranitic cupolas; triphylite-lithiophilite in the beryl-phosphate pegmatites, and amblygonite-montebrasite in the quartz-montebrasite veins. The origin of these different styles of mineralization is considered to be related to differentiation of peraluminous melts, which were generated by partial melting of metasedimentary rocks during the Variscan orogeny. On the basis of paragenesis and chemical composition, the pegmatitic fields and Li mineralization associated with granitic cupolas record the highest fractionation levels, whereas the beryl-phosphate pegmatites and quartz-montebrasite veins show lower degrees of fractionation. There are a number of textural and mineralogical indicators for Li exploration in the Central Iberian Zone and in the Galizia-Trás-Os-Montes Zone, with the highest economic potential for Li being in the pegmatite fields.
The Tres Arroyos granite-pegmatite system is located in the SW margin of the Nisa-Alburquerque Variscan batholith. Two granitic facies (monzogranite and marginal leucogranite), and three types of aplite-pegmatite dykes (barren, intermediate and highly evolved Li-rich), have been distinguished in the area, with a zoned distribution from the granite southwards. Trace elements in quartz from the five facies have been analyzed by LA-ICP-MS in order to obtain information about the petrogenetic links among the different lithologies of this system, as well as to better understand the regional and individual fractionation processes that led to the distinct rocks. Aluminium, Ti, Li and Ge show continuous trends from the monzogranite, through the marginal granitic facies, the barren and intermediate aplite-pegmatites, up to the most evolved Li-rich dykes.
Abundant Li-Cs-Ta aplite-pegmatite dykes were emplaced in the western Central Iberian Zone of the Iberian Massif during the Variscan Orogeny. Their origin and petrogenetic relationships with the widespread granitoids have led to a currently rekindled discussion about anatectic vs. granitic origin for the pegmatitic melts. To deal with these issues, the aplite-pegmatite dykes from the Tres Arroyos area, which constitute a zoned pegmatitic field related to the Nisa-Alburquerque granitic batholith, have been studied. This work comprises a complete study of Nb-Ta-Sn oxides’ mineralogy, whole-rock geochemistry, and U-Pb geochronology of the aplite-pegmatites that have been grouped as barren, intermediate, and Li-rich. The most abundant Nb-Ta-Sn oxides from Tres Arroyos correspond to columbite-(Fe), columbite-(Mn) and cassiterite. Niobium-Ta oxides show a marked increase in the Mn/(Mn+Fe) ratio from the barren aplite-pegmatites up to the Li-rich bodies, whereas variations in the Ta/(Ta+Nb) ratio are not continuous. The probable factors controlling fractionation of Mn/Fe and Ta/Nb reflected in Nb-Ta oxides may be attributed to the crystallization of tourmaline, phosphates and micas. The lack of a progressive Ta/Nb increase with the fractionation may be also influenced by the high F and P availability in the parental pegmatitic melts. Most of the primary Nb-Ta oxides would have crystallized by punctual chemical variations in the boundary layer, whereas cassiterite formation would be related to an undercooling of the system. Whole-rock composition of the distinguished lithotypes reflects similar tendencies to those observed in mineral chemistry, supporting a single path of fractional crystallization from the parental Nisa-Alburquerque monzogranite up to the most evolved Li-rich aplite-pegmatites. The age of 305 ± 9 Ma, determined by LA-ICP-MS U-Pb dating of columbite-tantalite oxides, reinforces the linkage of the studied aplite-pegmatites and the cited parental monzogranite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.