By using an in vivo hydroponic rice seedling culture system, we investigated the physiological and biochemical responses of a model rice japonica cultivar Nipponbare to salt stress using proteomics and classical biochemical methods. Yoshida's nutrient solution (YS) was used to grow rice seedlings. YS-grown 18-day-old seedlings manifested highly stable and reproducible symptoms, prominently the wilting and browning of the 3rd leaf, reduced photosynthetic activity, inhibition in overall seedling growth, and failure to develop new (5th) leaf, when subjected to salt stress by transferring them to YS containing 130 mM NaCl for 4 days. As leaf response to salt stress is least investigated in rice by proteomics, we used the 3rd leaf as source material. A comparison of 2-DE protein profiles between the untreated control and salt-stressed 3rd leaves revealed 55 differentially expressed CBB-stained spots, where 47 spots were increased over the control. Of these changed spots, the identity of 33 protein spots (27 increased and 5 decreased) was determined by nESI-LC-MS/MS. Most of these identified proteins belonged to major metabolic processes like photosynthetic carbon dioxide assimilation and photorespiration, suggesting a good correlation between salt stress-responsive proteins and leaf morphology. Moreover, 2-DE immunoblot and enzymatic activity analyses of 3rd leaves revealed remarkable changes in the key marker enzymes associated with oxidative damage to salt stress: ascorbate peroxidase and lipid peroxidation were induced, and catalase was suppressed. These results demonstrate that hydroponic culture system is best suited for proteomics of salt stress in rice seedling.
Nitrogen fertilization is essential for increasing rice production to meet the food demands of increasing world's population. We established an in vivo hydroponic rice seedling culture system to investigate physio-biochemical/molecular responses of various rice japonica and indica cultivars to low nitrogen (N). Three-week-old seedlings grown in Yoshida's nutrient solution manifested stable and reproducible symptoms, such as reduced shoot growth and length under low N. Out of 12 genetically selected cultivars, 11 cultivars showed varied degrees of growth reduction response to applied N (4 and 40 ppm N for treatment and control, respectively), whereas one cultivar (no. 12) showed similar growth as the control though its leaf width was smaller than control. Leaves of a representative low N-responsive cultivar (BG90-2) were sampled for revealing protein profiles between low and normal (control) N application by two-dimensional gel electrophoresis (2-DGE). Forty-one proteins were identified with MALDI-TOF-MS and nESI-LC-MS/MS. Assignment of proteins into major (energy metabolism, photosynthesis and oxidative stress) and minor functional categories, revealed many novel low N-responsive proteins, including those having energy/photosynthesis-and defense/stress-and iron homeostasis-related functions. Results suggest the usefulness of proteomics in identifying novel N-responsive proteins and may provide potential markers for rice response to low N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.