This paper describes different approaches that cryo-EM users can take to improve the quality of their sample distribution and ice for high-resolution single-particle cryo-EM.
Globally accessible preventive and therapeutic molecules against SARS-CoV-2 are urgently needed. DARPin molecules are an emerging class of novel therapeutics based on naturally occurring repeat proteins (∼15 kDa in size) and can be rapidly produced in bacteria in large quantities. Here, we report the identification of 380 DARPin molecules specifically targeting the SARS-CoV-2 spike protein selected from a naïve library of 1012 DARPin molecules. Using extensive biophysical and biochemical characterization, (pseudo)virus neutralization assays and cryo-EM analysis, 11 mono-DARPin molecules targeting either the receptor binding domain (RBD), the S1 N-terminal-domain (NTD) or the S2 domain of the SARS-CoV-2 spike protein were chosen. Based on these 11 mono-DARPin molecules, 31 anti-SARS-CoV-2 multi-DARPin molecules were constructed which can broadly be grouped into 2 types; multi-paratopic RBD-neutralizing DARPin molecules and multi-mode DARPin molecules targeting simultaneously RBD, NTD and the S2 domain. Each of these multi-DARPin molecules acts by binding with 3 DARPin modules to the SARS-CoV-2 spike protein, leading to potent inhibition of SARS-CoV-2 infection down to 1 ng/ml (12 pM) and potentially providing protection against viral escape mutations. Additionally, 2 DARPin modules binding serum albumin, conferring an expected half-life of about 3 weeks in humans, were included in the multi-DARPin molecules. The protective efficacy of one multi-DARPin molecule was studied in a Golden Syrian hamster SARS-CoV-2 infection model, resulting in a significant reduction in viral load and pathogenesis. In conclusion, the multi-DARPin molecules reported here display very high antiviral potency, high-production yield, and a long systemic half-life, and thereby have the potential for single-dose use for prevention and treatment of COVID-19.
The emergence of SARS-CoV-2 antibody escape-mutations highlights the urgent clinical need for broadly neutralizing therapeutics. We previously identified a potent human monoclonal antibody, 47D11, capable of cross-neutralizing SARS-CoV-2 and SARS-CoV, and protecting against the associated respiratory disease in an animal model. Here, we report cryo-EM structures of trimeric SARS-CoV and SARS-CoV-2 spike ectodomains in complex with the 47D11 Fab. 47D11 binds specifically to the closed conformation of the receptor-binding domain, distal to the ACE2 binding site. The CDRL3 stabilizes the N343 glycan in an upright conformation, exposing a conserved and mutationally constrained hydrophobic pocket, into which the CDRH3 loop inserts two aromatic residues. 47D11 stabilizes a partially open conformation of the SARS-CoV-2 spike, suggesting that it could be used effectively in combination with other antibodies that target the exposed receptor-binding motif. Altogether, these results reveal a cross-protective epitope on the SARS-CoV-2 spike and provide a structural roadmap for the development of 47D11 as a prophylactic or post-exposure therapy for COVID-19.
The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays striking immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor-binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other Variants of Concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and/or hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs, and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.