The ability of organic polymer rich coagulants for colour removal from acid dye was studied. An improved method for the extraction of the active coagulant agent from the seeds was employed. The effects of four variables including pH, coagulant dosage, dye concentration and time were analyzed. Response surface methodology (RSM) using face-centered central composite design (FCCD) was used to optimize the four variables. Increase in the colour removal efficiency was higher in acidic solution pH. Accurate control of coagulant dosages gave optimum destabilization of charged particles and re-stabilization occurred at above 800mg/L dosages. Polymer performances were measured through time-dependent decrease in particle concentrations following aggregates growth. The verification experiment agreed with the predicted values having less than 4% standard error. Overlay contour plot was used to establish an optimum condition for the multiple responses studied. The response surface approach was appropriate for optimizing the coagulation-flocculation process while minimizing the number of experiments. Coagulants studied should be considered as an alternative for conventional coagulants that are widely used in dye wastewater treatment plants.
The performance of Vigna unguiculata coagulant (VUC) for colour removal from acid dye was investigated in this study. The proximate, structure and morphology of the coagulant were investigated using standard offi cial methods, Fourier-Transform Infrared (FTIR) spectrometer and scanning electron microscopy (SEM), respectively. Response surface methodology (RSM) using face-centred central composite design (FCCD) optimized four process variables including pH, coagulant dosage, dye concentration and time. The colour removal effi ciency obtained from the optimization analysis was 99.26% at process conditions of pH 2, coagulant dosage 256.09 mg/l, dye concentration 16.7 mg/l and time 540 min. The verifi cation experiments agreed with the predicted values having a standard error value of 1.96%. Overlay contour plot established optimum areas where the predicted response variable is in an acceptable range (≥ 70%) with respect to optimum conditions. The FCCD approach was appropriate for optimizing the process giving higher removal effi ciency when compared to the main effect plots.
To achieve sustainability, it is necessary to use proper treatment methods to reduce the pollutant loads of receiving waters. This study investigates the coagulative reduction of turbidity, COD, BOD and colour from aquaculture wastewater (AW) using a novel Garcinia kola seeds coagulant (GKC). This coagulant was obtained from extraction of Garcinia kola seeds and analysed for its spectral and morphological characteristics through FTIR and SEM. The kinetics of coagulation-flocculation were also investigated in terms of total dissolved and suspended solids (TDSP). The seeds had 11.27% protein and 68.33% carbohydrate, showing usability in adsorption/charges neutralisation as a coagulant to reduce particles. Maximal turbidity reduction = 81.93%, COD = 75.03%, BOD = 72.84% and colour = 56.69% at 0.3 g GKC/L, pH 2, 60 min and 303 K were achieved. Von Smoluchowski’s second-order peri-kinetics theory was used to fit the results, giving R2 > 0.9. At a coagulation order (α) of 2, the reaction rate (KC) and half-life (τS1/2) were 0.0003 L/g·min and 25.3 min at the optimal conditions. The sorption data better fit the Lagergren compared to the Ho adsorption model. Furthermore, the net cost of using GKC to handle 1 L of AW (including electricity and material costs) was calculated to be 1.57 EUR, and the costs of 0.3 g/L GKC preparation and energy were 0.27 and 1.30 EUR, respectively. In summary, these seeds can be used to pre-treat AW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.