Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier.
In this paper, the authors describe a novel type of hydrogel coating prepared from the copolymer of human serum albumin and oxidized dextran. The material was designed as a hydrogel sealant for polyester (Dacron®)-based vascular grafts. Dextran was chosen as a coating material due to its anti-thrombogenic properties. Prepared hydrogels were compared with similar, already known biomaterial made from gelatine with the same cross-linking agent. Obtained hydrogels, prepared from various ratios of oxidized dextran/albumin or oxidized dextran/gelatine, showed different cross-linking densities, which caused differences in swelling, degradation rate and mechanical properties. Permeability tests confirmed the complete tightness of the hydrogel-modified prosthesis. Results showed that application of the hydrogel coating provided leakage-free prosthesis and eliminated the need of pre-clotting.
For many years, novel strategies for cancer detection and treatment using nanoparticles (NPs) have been developed. Esophageal adenocarcinoma is the sixth leading cause of cancer-related deaths in Western countries, and despite recent advances in early detection and treatment, its prognosis is still very poor. This study investigated the use of fluorescent organic NPs as potential diagnostic tool in an experimental in vivo model of Barrett’s esophageal adenocarcinoma. NPs were made of modified polysaccharides loaded with [4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran] (DCM), a well-known fluorescent dye. The NP periphery might or might not be decorated with ASYNYDA peptide that has an affinity for esophageal cancer cells. Non-operated and operated rats in which gastroesophageal reflux was surgically induced received both types of NPs (NP-DCM and NP-DCM-ASYNYDA) by intravenous route. Localization of mucosal NPs was assessed in vivo by confocal laser endomicroscopy, a technique which enables a “real time” and in situ visualization of the tissue at a cellular level. After injection of NP-DCM and NP-DCM-ASYNYDA, fluorescence was observed in rats affected by esophageal cancer, whereas no signal was observed in control non-operated rats, or in rats with simple esophagitis or Barrett’s esophagus mucosa. Fluorescence was observable in vivo 30 minutes after the administration of NPs. Interestingly, NP-DCM-ASYNYDA induced strong fluorescence intensity 24 hours after administration. These observations suggested that NPs could reach the tumor cells, likely by enhanced permeability and retention effect, and the peptide ASYNYDA gave them high specificity for esophageal cancer cells. Thus, the combination of NP platform and confocal laser endomicroscopy could play an important role for highlighting esophageal cancer conditions. This result supports the potential of this strategy as a targeted carrier for photoactive and bioactive molecules in esophageal cancer diagnosis and treatment.
Alginate-chitosan-alginate multilayer hydrogel encapsulation systems were investigated for encapsulation of chondrocytes. Hydrogel is crosslinked due to ionic interaction between cationic chitosan and anionic alginate, and additionally by calcium ions. Two types of chitosan with molecular weight were investigated. Cells were encapsulated in two shape microcapsules, microbeads with diameter size 300-400 and 500-600 µm and fibres with diameter 500-600 µm. The work provides a detailed examination of the impact of the microencapsulation process on the growth of cells. The viability of chondrocytes can be influenced by the size of produced microcapsules, while the shape of microcapsules has no important significance on cell viability. The applied encapsulation methods do not contain harmful stages and create conducive conditions for cell growth. A possible application area of the developed system is dressing and regeneration of damaged joint cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.