The aim of this study was twofold: to assess the relationship between c-Myb and Bcl-x expression and to evaluate the prognostic significance of their expression in colorectal carcinoma (CRC) patients. Analysis of tumors from 91 CRC patients for expression of c-Myb and Bcl-x revealed a significant relationship between these two proteins. Kaplan-Meier's analysis showed an increased risk of relapse and death in patients whose tumor specimens displayed high c-Myb levels and Bcl-x positivity. Similar results were also observed excluding Dukes' D patients. Molecular analysis using three c-Myb-overexpressing LoVo clones indicated that c-Myb overexpression was accompanied by up-regulation of Bcl-x(L) protein and mRNA. Tumors originating from these clones injected in nude mice were significantly larger than those formed in mice injected with parental or vector-transfected LoVo cells. Moreover, tumors derived from parental and control vector-transfected but not from c-Myb-overexpressing LoVo cells showed high frequency of apoptotic cells. These results provide direct evidence of an association between c-Myb and Bcl-x expression and suggest that expression of both molecules might be a useful prognostic marker in CRC.
A class of small non-coding RNAs, the microRNAs (miRNAs), have recently attracted great attention in cancer research since they play a central role in regulation of gene-expression and miRNA aberrant expression is found in almost all types of human cancer. The discovery of circulating miRNAs in body fluids and the finding that they are often tumor specific and can be detected early in tumorigenesis has soon led to the evaluation of their possible use as cancer biomarkers and treatment-response predictors. The evidence that tumor cells communicate via the secretion and delivery of miRNAs packed into tumor-released microvesicles has prompted to investigate miRNA contribution as signaling molecules to the establishment and maintenance of the tumor microenvironment and the metastatic niche in cancer. In this review we highlight the recent advances on the role of exosomal miRNAs as mediators of cancer cell-to-cell communication.
BackgroundNeuroblastoma (NB) is one of the most aggressive tumors that occur in childhood. Although genes, such as MYCN, have been shown to be involved in the aggressiveness of the disease, the identification of new biological markers is still desirable. The induction of differentiation is one of the strategies used in the treatment of neuroblastoma. A-type lamins are components of the nuclear lamina and are involved in differentiation. We studied the role of Lamin A/C in the differentiation and progression of neuroblastoma.Methodology/Principal FindingsKnock-down of Lamin A/C (LMNA-KD) in neuroblastoma cells blocked retinoic acid-induced differentiation, preventing neurites outgrowth and the expression of neural markers. The genome-wide gene-expression profile and the proteomic analysis of LMNA-KD cells confirmed the inhibition of differentiation and demonstrated an increase of aggressiveness-related genes and molecules resulting in augmented migration/invasion, and increasing the drug resistance of the cells. The more aggressive phenotype acquired by LMNA-KD cells was also maintained in vivo after injection into nude mice. A preliminary immunohistochemistry analysis of Lamin A/C expression in nine primary stages human NB indicated that this protein is poorly expressed in most of these cases.Conclusions/SignificanceWe demonstrated for the first time in neuroblastoma cells that Lamin A/C plays a central role in the differentiation, and that the loss of this protein gave rise to a more aggressive tumor phenotype.
The epithelial-mesenchymal transition (EMT) plays a key role in tumor progression, drug resistance and metastasis. Recently, numerous microRNA (miRNA) have been described to regulate EMT in tumor progression. In this study, we found that conditioned medium from the LC212 non-small-cell lung cancer (NSCLC) cell line (LC212-CM) induces morphological changes and overexpression of Vimentin, CD90, SMAD 2/3, SLUG and TWIST in A549 NSCLC cells, consistent with a mesenchymal phenotype. To identify the soluble mediators in LC212-CM involved in this phenomenon, we performed miRNA profiling and TGF-β1 quantification. We found that LC212-CM contains high levels of TGF-β1 as well as different secreted miRNAs. We focused our attention on Homo sapiens-microRNA21 (hsa-miR21), one of most relevant miRNA associated with lung cancer progression, metastasis and EMT. An hsa-miR21 antagomiR was able to prevent the LC212-CM-induced EMT phenotype in A549 cells. Furthermore, we found that TGF-β1 and hsa-miR21 cooperate in the induction of EMT in A549 cells. Intriguingly, TGF-β1 was found to induce hsa-miR21 expression in A549 cell, thus suggesting that the hsa-miR21 mediates at least in part the pro-EMT effects of TGF-β1. In conclusion, hsa-miR21 and TGF-β1 are involved in autocrine and paracrine circuits that regulate the EMT status of lung cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.