Observers often miss the 2nd of 2 visual targets (first target [T1] and second target [T2]) when these targets are presented closely in time; the attentional blink (AB). The authors hypothesized that the AB occurs because the attentional response to T2 is delayed by T1 processing, causing T2 to lose a competition for attention to the item that follows it. The authors investigated this hypothesis by determining whether the AB is attenuated when T2 is precued. The results from 4 experiments showed that the duration and magnitude of the AB were substantially reduced when T2 was precued. The observed improvement in T2 report did not occur at the expense of T1 report, suggesting that processing of T1 was already completed or was at least protected when the cue was presented. The authors conclude that, during the AB, there is a delay between detection and the selection of target candidates for consolidation in short-term memory.
In the present study, we investigated whether faces have an advantage in retaining attention over other stimulus categories. In three experiments, subjects were asked to focus on a central go/no-go signal before classifying a concurrently presented peripheral line target. In Experiment 1, the go/no-go signal could be superimposed on photographs of upright famous faces, matching inverted faces, or meaningful objects. Experiments 2 and 3 tested upright and inverted unfamiliar faces, printed names, and another class of meaningful objects in an identical design. A fourth experiment provided a replication of Experiment 1, but with a 1,000-msec stimulus onset asynchrony between the onset of the central face/nonface stimuli and the peripheral targets. In all the experiments, the presence of an upright face significantly delayed target response times, in comparison with each of the other stimulus categories. These results suggest a general attentional bias, so that it is particularly difficult to disengage processing resources from faces.
Eye-tracking research in infants and older children has gained a lot of momentum over the last decades. Although eye-tracking research in these participant groups has become easier with the advance of the remote eye-tracker, this often comes at the cost of poorer data quality than in research with well-trained adults (Hessels, Andersson, Hooge, Nyström, & Kemner Infancy, 20, 601–633, 2015; Wass, Forssman, & Leppänen Infancy, 19, 427–460, 2014). Current fixation detection algorithms are not built for data from infants and young children. As a result, some researchers have even turned to hand correction of fixation detections (Saez de Urabain, Johnson, & Smith Behavior Research Methods, 47, 53–72, 2015). Here we introduce a fixation detection algorithm—identification by two-means clustering (I2MC)—built specifically for data across a wide range of noise levels and when periods of data loss may occur. We evaluated the I2MC algorithm against seven state-of-the-art event detection algorithms, and report that the I2MC algorithm’s output is the most robust to high noise and data loss levels. The algorithm is automatic, works offline, and is suitable for eye-tracking data recorded with remote or tower-mounted eye-trackers using static stimuli. In addition to application of the I2MC algorithm in eye-tracking research with infants, school children, and certain patient groups, the I2MC algorithm also may be useful when the noise and data loss levels are markedly different between trials, participants, or time points (e.g., longitudinal research).
The ability to search and scan the environment effectively is a prerequisite for spatial behavior. A longstanding theory proposes that inhibition of previously attended loci (Inhibition of return; IOR) serves to facilitate exploration by increasing the likelihood to inspect new areas instead of returning to locations that have been inspected before. In this eye movement study we tested whether we could find evidence in favor of this hypothesis. Here we report that IOR does occur during search and free viewing, because we found increased fixation times preceding return saccades (eye movements that return to previously fixated locations). Meanwhile we observed no influence of IOR on the search strategy. Rather than the predicted low number we found many return saccades. Therefore, IOR does not serve as a foraging facilitator in saccadic search and free viewing. We hypothesize that IOR is an intrinsic aspect of shifting attention and gaze direction and furthermore that it is not always advantageous to prevent return saccades.
The present study concerns the dynamics of multiple fixation search. We tried to gain insight into: (1) how the peripheral and foveal stimulus affect fixation duration; and (2) how fixation duration affects the peripheral target selection for saccades. We replicated the non-corroborating results of Luria and Strauss (1975) ('Eye movements during search for coded and uncoded targets', Perception and Psychophysics 17, 303-308) (saccades were selective), and Zelinsky (1996) (Using eye movements to assess the selectivity of search movements. Vision research 36(14), 2177-2187) (saccades were not selective), by manipulating the critical features for peripheral selection and discrimination separately. We found search to be more selective and efficient when the selection task was easy or when fixations were long-lasting. Remarkably, subjects did not increase their fixation durations when the peripheral selection task was more difficult. Only the discrimination task affected the fixation duration. This implies that the time available for peripheral target selection is determined mainly by the discrimination task. The results of the present experiment suggest that, besides the difficulty of the peripheral selection task, fixation duration is an important factor determining the selection of potential targets for eye movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.