Sex steroid hormones play important physiological roles in reproductive and nonreproductive tissues, including immune cells. These hormones exert their functions by binding to either specific intracellular receptors that act as ligand-dependent transcription factors or membrane receptors that stimulate several signal transduction pathways. The elevated susceptibility of males to bacterial infections can be related to the usually lower immune responses presented in males as compared to females. This dimorphic sex difference is mainly due to the differential modulation of the immune system by sex steroid hormones through the control of proinflammatory and anti-inflammatory cytokines expression, as well as Toll-like receptors (TLRs) expression and antibody production. Besides, sex hormones can also affect the metabolism, growth, or virulence of pathogenic bacteria. In turn, pathogenic, microbiota, and environmental bacteria are able to metabolize and degrade steroid hormones and their related compounds. All these data suggest that sex steroid hormones play a key role in the modulation of bacterial-host interactions.
Ether à go-go (EAG) potassium channels display oncogenic properties. In normal tissues, EAG mRNA is almost exclusively expressed in brain, but it is expressed in several somatic cancer cell lines, including HeLa, from cervix. Antisense experiments against eag reduce cell proliferation in some cancer cell lines, and inhibition of EAG-mediated currents has been suggested to decrease cell proliferation in a melanoma cell line. Because of the potential clinical relevance of EAG, we investigated EAG mRNA expression in the following fresh samples from human uterine cervix: 5 primary cultures obtained from cancerous biopsies, 1 cancerous fresh tissue, and 12 biopsies of control normal tissue. All of the control cervical samples came from patients with negative pap smears. Reverse transcription-PCR and Southern-blot experiments revealed eag expression in 100% of the cancerous samples and in 33% of the normal biopsies. Immunochemistry experiments showed the presence of EAG channel protein in cells from the primary cultures and in cervical cancer biopsies sections from the same patients. In addition, we looked for EAG-mediated currents in the cultures from cervical cancer cells. Here we show for the first time EAG channel activity in human tumors. Patch-clamp recordings showed typical EAG-mediated currents modulated by magnesium and displaying a pronounced Cole-Moore shift. Because EAG expression and channel activity have been suggested to be important in cell proliferation, our findings strongly support the idea of considering EAG as a tumor marker as well as a potential membrane therapeutic target for cervical cancer.
BackgroundSex differences are important epidemiological factors that impact in the frequency and severity of infectious diseases. A clear sexual dimorphism in bacterial infections has been reported in both humans and animal models. Nevertheless, the molecular mechanisms involved in this gender bias are just starting to be elucidated. In the present article, we aim to review the available data in the literature that report bacterial infections presenting a clear sexual dimorphism, without considering behavioral and social factors.Main bodyThe sexual dimorphism in bacterial infections has been mainly attributed to the differential levels of sex hormones between males and females, as well as to genetic factors. In general, males are more susceptible to gastrointestinal and respiratory bacterial diseases and sepsis, while females are more susceptible to genitourinary tract bacterial infections. However, these incidences depend on the population evaluated, animal model and the bacterial species. Female protection against bacterial infections and the associated complications is assumed to be due to the pro-inflammatory effect of estradiol, while male susceptibility to those infections is associated with the testosterone-mediated immune suppression, probably via their specific receptors. Recent studies indicate that the protective effect of estradiol depends on the estrogen receptor subtype and the specific tissue compartment involved in the bacterial insult, suggesting that tissue-specific expression of particular sex steroid receptors contributes to the susceptibility to bacterial infections. Furthermore, this gender bias also depends on the effects of sex hormones on specific bacterial species. Finally, since a large number of genes related to immune functions are located on the X chromosome, X-linked mosaicism confers a highly polymorphic gene expression program that allows women to respond with a more expanded immune repertoire as compared with men.ConclusionNotwithstanding there is increasing evidence that confirms the sexual dimorphism in certain bacterial infections and the molecular mechanisms associated, further studies are required to clarify conflicting data and to determine the role of specific hormone receptors involved in the gender bias of bacterial infections, as well as their potential as therapeutic targets.
We studied the effects of oestradiol and progesterone on progesterone receptor (PR) isoform content in the brain of ovariectomized rats and in intact rats during the oestrous cycle by Western blot analysis. In the hypothalamus and the preoptic area of ovariectomized rats, PR-A and PR-B content was increased by oestradiol, whereas progesterone significantly diminished the content of both PR isoforms after 3 h of treatment in the hypothalamus, but not in the preoptic area. In the hippocampus, only PR-A content was significantly increased by oestradiol while progesterone significantly diminished it after 12 h of treatment. In the frontal cortex, no treatment significantly modified PR isoform content. During the oestrous cycle, the lowest content of PR isoforms in the hypothalamus was observed on diestrus day and, by contrast, in the preoptic area, the highest content of both PR isoforms was observed on diestrus day. We observed no changes in PR isoform content in the hippocampus during the oestrous cycle. These results indicate that the expression of PR isoforms is differentially regulated by sex steroid hormones in a regionally specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.