Abstract. Dams as well as protective dikes and levees are critical infrastructures whose associated risk must be properly managed in a continuous and updated process. Usually, dam safety management has been carried out assuming stationary climatic and non-climatic conditions. However, the projected alterations due to climate change are likely to affect different factors driving dam risk. Although some reference institutions develop guidance for including climate change in their decision support strategies, related information is still vast and scattered and its application to specific analyses such as dam safety assessments remains a challenge. This article presents a comprehensive and multidisciplinary review of the impacts of climate change that could affect dam safety. The global effect can be assessed through the integration of the various projected effects acting on each aspect of the risk, from the input hydrology to the calculation of the consequences of the flood wave on population and assets at risk. This will provide useful information for dam owners and dam safety practitioners in their decision-making process.
Abstract. Risk analysis has become a top priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk, considering the population's needs and improving risk awareness. Within this context, two methodological pieces have been developed in the period 2009-2011 within the SUFRI project (Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2nd ERA-Net CRUE Funding Initiative). First, the "SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making" provides a comprehensive and quantitative tool for flood risk analysis. Second, the "Methodology for investigation of risk awareness of the population concerned" presents the basis to estimate current risk from a social perspective and identify tendencies in the way floods are understood by citizens. Outcomes of both methods are integrated in this paper with the aim of informing decision making on non-structural protection measures. The results of two case studies are shown to illustrate practical applications of this developed approach. The main advantage of applying the methodology herein presented consists in providing a quantitative estimation of flooding risk before and after investing in non-structural risk mitigation measures. It can be of great interest for decision makers as it provides rational and solid information.
Sustainable drainage systems are an alternative and holistic approach to conventional urban stormwater management that use and enhance natural processes to mimic pre-development hydrology, adding a number of wellrecognized, although not so often quantified benefits. However, transitions towards regenerative urban built environments that widely incorporate sustainable drainage systems are "per se" innovative journeys that encounter barriers which include the limited evidence on the performance of these systems which, in many countries, are still unknown to professionals and decision makers. A further important barrier is the frequently poor interaction among stakeholders; key items such as sustainable drainage systems provide collective benefits which also demand collective efforts. With the aim of overcoming such innovation-driven barriers, six showcase projects (including rain gardens acting as infiltration basins, swales and a green roof) to demonstrate the feasibility and suitability of sustainable drainage systems were developed and/or retrofitted in two cities of the Valencian region of Spain as a part of an European project, and
ElsevierAltarejos García, L.; Escuder Bueno, I.; Serrano Lombillo, AJ.; Gómez De Membrillera Ortuño, M. (2012). Methodology for estimating the probability of failure by sliding in concrete gravity dams in the context of risk analysis. Structural Safety. 34(1):1-13. doi:10.1016/j.strusafe.2012.01.001. METHODOLOGY FOR ESTIMATING THE PROBABILITY OF FAILURE BY SLIDING IN CONCRETE GRAVITY DAMS IN THE CONTEXT OF RISK ANALYSISJanuary 12 th , 2012 AbstractDam safety based on risk analysis methodologies demand quantification of the risk of the dam-reservoir system. This means that, for a given initial state of the system, and for the several failure modes considered, it is necessary to estimate the probability of the load events and the conditional probability of response of the system for a given load event, as well as estimating the consequences on the environment for the obtained response of the system. The following paper focuses in the second of these probabilities, that is, quantifying the conditional probability of response of the system, for a given load event, and for the specific case of concrete gravity dams. Dam-reservoir systems have a complex behavior which has been tackled traditionally by simplifications in the formulation of the models and adoption of safety factors. The purpose of the methodology described in this paper is to improve the estimation of the conditional probability of response of the damreservoir system for concrete gravity dams, using complex behavior models based on numerical simulation techniques, together with reliability techniques of different levels of precision are applied, including Level 3 reliability techniques with Monte Carlo simulation. The paper includes an example of application of the proposed methodology to a Spanish concrete gravity dam, considering the failure mode of sliding along the rock-concrete interface. In the context of risk analysis, the results obtained for conditional probability of failure allow several conclusions related to their validity and safety implications that acquire a significant relevance due to the innovation of the study performed.
ElsevierPerales Monparler, S.; Andrés Doménech, I.; Andreu Álvarez, J.; Escuder Bueno, I. (2015). AbstractUrban drainage patterns are altered by increasing urbanization and rapid conveyance and discharge of runoff, leading to increased flood risk, diminish of aquifer recharge and degradation of receiving waterways. These effects are expected to escalate with climate change. In response, alternative and more sustainable drainage practices with a holistic approach have been developed, although their wide-scale implementation has been limited largely due to socioinstitutional barriers. This paper presents an innovative regenerative urban stormwater methodology for transition management at city level, containing two main enablers to overcome the barriers that drag out progress. First, a structured set of activities, the 'wheel', to guide and document the process, which is steered by a group of regional actors. Then, a visual and effective set of indicators that monitors and assesses the progress achieved and identifies the strategies to move forward. Its successful application to Benaguasil, a Mediterranean city, reveals that by integrating the views and strategies from actors at different but interconnected scales and following a structured but flexible methodology, it is possible to make progress in only few years and have a promising future ahead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.