The initial isolation of graphene in 2004 spawned massive interest in this two-dimensional pure sp(2) carbon structure due to its incredible electrical, optical, mechanical, and thermal effects. This in turn led to the rapid development of various characterization tools for graphene. Examples include Raman spectroscopy and scanning tunneling microscopy. However, the one tool with the greatest prowess for characterizing and studying graphene is the transmission electron microscope. State-of-the-art (scanning) transmission electron microscopes enable one to image graphene with atomic resolution, and also to conduct various other characterizations simultaneously. The advent of aberration correctors was timely in that it allowed transmission electron microscopes to operate with reduced acceleration voltages, so that damage to graphene is avoided while still providing atomic resolution. In this comprehensive review, a brief introduction is provided to the technical aspects of transmission electron microscopes relevant to graphene. The reader is then introduced to different specimen preparation techniques for graphene. The different characterization approaches in both transmission electron microscopy and scanning transmission electron microscopy are then discussed, along with the different aspects of electron diffraction and electron energy loss spectroscopy. The use of graphene for other electron microscopy approaches such as in-situ investigations is also presented.
A series of solid solutions (Li 2 Fe 1−y Mn y )SO with a cubic antiperovskite structure was successfully synthesized. The composition (Li 2 Fe 0.5 Mn 0.5 )SO was intensively studied as a cathode in Li-ion batteries showing a reversible specific capacity of 120 mA h g −1 and almost a 100% Coulombic efficiency after 50 cycles at 0.1C meaning extraction/insertion of 1 Li per formula unit during 10 h. Operando X-ray absorption spectroscopy confirmed the redox activity of both Fe 2+ and Mn 2+ cations during battery charge and discharge, while operando synchrotron X-ray diffraction studies revealed a reversible formation of a second isostructural phase upon Li-removal and insertion at least for the first several cycles. In comparison to (Li 2 Fe)SO, the presence of Mn stabilizes the crystal structure of (Li 2 Fe 0.5 Mn 0.5 )SO during battery operation, although post mortem TEM studies confirmed a gradual amorphization after 50 cycles. A lower specific capacity of (Li 2 Fe 0.5 Mn 0.5 )SO in comparison to (Li 2 Fe)SO is probably caused by slower kinetics, especially in the two-phase region, as confirmed by Li-diffusion coefficient measurements.
Cubic Li2Fe0.9M0.1SO antiperovskites with M–Co2+, or Mn2+ were successfully synthesized by a solid-state technique, and studied as cathode materials in Li-batteries. The influence of the Co, and Mn cation substitution of Fe in Li2FeSO on the resulting electrochemical performance was evaluated by galvanostatic cycling, while the reaction mechanism was explored by applying operando X-ray absorption and X-ray diffraction techniques using synchrotron radiation facilities. Even 10% Fe-substitution by these metals completely changes the structural behavior of the material upon Li-removal and insertion, in comparison to Li2FeSO. The Co-substitution significantly improves cyclability of the material at high current densities in comparison to the non-substituted material, reaching a specific capacity of 250 mAh/g at 1C current density. In contrast, the Mn-substitution leads to deterioration of the electrochemical performance because of the impeded kinetics, which may be caused by the appearance of a second isostructural phase due to formation of Jahn-Teller Mn3+ cations upon delithiation.
The excitement of graphene (as well as 2D materials in general) has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM). This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required) and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.