We consider different Linear Combination of Unitaries (LCU) decompositions for molecular electronic structure Hamiltonians. Using these LCU decompositions for Hamiltonian simulation on a quantum computer, the main figure of merit is the 1-norm of their coefficients, which is associated with the quantum circuit complexity. It is derived that the lowest possible LCU 1-norm for a given Hamiltonian is half of its spectral range. This lowest norm decomposition is practically unattainable for general Hamiltonians; therefore, multiple practical techniques to generate LCU decompositions are proposed and assessed. A technique using symmetries to reduce the 1-norm further is also introduced. In addition to considering LCU in the Schrödinger picture, we extend it to the interaction picture, which substantially further reduces the 1-norm.
Measuring the expectation value of the molecular electronic Hamiltonian is one of the challenging parts of the variational quantum eigensolver. A widely used strategy is to express the Hamiltonian as a sum of measurable fragments using fermionic operator algebra. Such fragments have an advantage of conserving molecular symmetries that can be used for error mitigation. The number of measurements required to obtain the Hamiltonian expectation value is proportional to a sum of fragment variances. Here, we introduce a new method for lowering the fragments' variances by exploiting flexibility in the fragments' form. Due to idempotency of the occupation number operators, some parts of two-electron fragments can be turned into one-electron fragments, which then can be partially collected in a purely one-electron fragment. This repartitioning does not affect the expectation value of the Hamiltonian but has non-vanishing contributions to the variance of each fragment. The proposed method finds the optimal repartitioning by employing variances estimated using a classically efficient proxy for the quantum wavefunction. Numerical tests on several molecules show that repartitioning of one-electron terms lowers the number of measurements by more than an order of magnitude.
Due to a continuum of electronic states present in periodic systems, the description of molecular dynamics on surfaces poses a serious computational challenge. One of the most used families of approaches in these settings are friction theories, which are based on the Ehrenfest (EH) approach. Yet, a mean-field treatment of electronic degrees of freedom in the EH method makes this approach inaccurate in some cases. Our aim is to clarify when EH breaks down for molecular dynamics on surfaces. Answering this question provides limits of applicability for more approximate friction theories derived from EH. We assess the EH method on one-dimensional, numerically exactly solvable models with a large but finite number of electronic states. Using the Landau-Zener formula and the Massey parameter, an expression that determines when EH breaks down is deduced. arXiv:1809.03829v1 [physics.chem-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.