Building on the success of Quantum Monte Carlo techniques such as diffusion Monte Carlo, alternative stochastic approaches to solve electronic structure problems have emerged over the last decade. The full configuration interaction quantum Monte Carlo (FCIQMC) method exact thermal density matrix, respectively. In this article we describe the HANDE-QMC code, an open-source implementation of FCIQMC, CCMC and DMQMC, including initiator and semi-stochastic adaptations. We describe our code and demonstrate its use on three example systems; a molecule (nitric oxide), a model solid (the uniform electron gas), and a real solid (diamond). An illustrative tutorial is also included.
Measuring the expectation value of the molecular electronic Hamiltonian is one of the challenging parts of the variational quantum eigensolver. A widely used strategy is to express the Hamiltonian as a sum of measurable fragments using fermionic operator algebra. Such fragments have an advantage of conserving molecular symmetries that can be used for error mitigation. The number of measurements required to obtain the Hamiltonian expectation value is proportional to a sum of fragment variances. Here, we introduce a new method for lowering the fragments' variances by exploiting flexibility in the fragments' form. Due to idempotency of the occupation number operators, some parts of two-electron fragments can be turned into one-electron fragments, which then can be partially collected in a purely one-electron fragment. This repartitioning does not affect the expectation value of the Hamiltonian but has non-vanishing contributions to the variance of each fragment. The proposed method finds the optimal repartitioning by employing variances estimated using a classically efficient proxy for the quantum wavefunction. Numerical tests on several molecules show that repartitioning of one-electron terms lowers the number of measurements by more than an order of magnitude.
Azulene is a prototypical molecule with an anomalous fluorescence from the second excited electronic state, thus violating Kasha's rule, and with an emission spectrum that cannot be understood within the Condon approximation. To better understand photophysics and spectroscopy of azulene and other non-conventional molecules, we develop a systematic, general, and efficient computational approach combining semiclassical dynamics of nuclei with ab initio electronic structure. First, to analyze the nonadiabatic effects, we complement the standard population dynamics by a rigorous 1 arXiv:2001.08414v2 [physics.chem-ph] measure of adiabaticity, estimated with the multiple-surface dephasing representation.Second, we propose a new semiclassical method for simulating non-Condon spectra, which combines the extended thawed Gaussian approximation with the efficient single-Hessian approach. S 1 ← S 0 and S 2 ← S 0 absorption and S 2 → S 0 emission spectra of azulene, recorded in a new set of experiments, agree very well with our calculations. We find that accuracy of the evaluated spectra requires the treatment of anharmonicity, Herzberg-Teller, and mode-mixing effects.
Exact nonadiabatic quantum evolution preserves many geometric properties of the molecular Hilbert space. In a companion paper [S. Choi and J. Vaníček, 2019], arXiv:1903.04946v3 [physics.chem-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.