Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Such forces can lead to the nuclear translocation of proteins, but whether force controls nucleocytoplasmic transport, and how, remains unknown. Here we show that nuclear forces differentially control passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins. We demonstrate that nuclear force increases permeability across nuclear pore complexes, with a dependence on molecular weight that is stronger for passive than facilitated diffusion. Due to this differential effect, force leads to the translocation into or out of the nucleus of cargoes within a given range of molecular weight and affinity for nuclear transport receptors. Further, we show that the mechanosensitivity of several transcriptional regulators can be both explained by this mechanism, and engineered exogenously by introducing appropriate nuclear localization signals. Our work unveils a mechanism of mechanically induced signalling, likely operating in parallel to others, with potential applicability across signalling pathways.
In the human pathogen Mycoplasma genitalium, homologous recombination is under the control of σ20, an alternative sigma factor that boosts the generation of genetic and antigenic diversity in the population. Under laboratory growth conditions, σ20 activation is rare and the factors governing its intermittent activity are unknown. Two σ20-regulated genes, rrlA and rrlB, showed to be important for recombination of homologous DNA sequences in this bacterium. Herein, we demonstrate that rrlA and rrlB code for two small proteins that participate in a feed-forward loop essential for σ20 function. In addition, we identify novel genes regulated by σ20 and show that several non-coding regions, which function as a reservoir for the generation of antigenic diversity, are also activated by this alternative sigma factor. Finally, we reveal that M. genitalium cells can transfer DNA horizontally by a novel mechanism that requires RecA and is facilitated by σ20 over-expression. This DNA transfer system is arguably fundamental for persistence of M. genitalium within the host since it could facilitate a rapid dissemination of successful antigenic variants within the population. Overall, these findings impose a novel conception of genome evolution, genetic variation and survival of M. genitalium within the host.
Cell nuclei are submitted to mechanical forces, which in turn affect nuclear and cell functions. Recent evidence shows that a crucial mechanically regulated nuclear function is nucleocytoplasmic transport, mediated by nuclear pore complexes (NPCs). Mechanical regulation occurs at two levels: first, by force application to the nucleus, which increases NPC permeability likely through NPC stretch. Second, by the mechanical properties of the transported proteins themselves, as mechanically labile proteins translocate through NPCs faster than mechanically stiff ones. In this perspective, we discuss this evidence and the associated mechanisms by which mechanics can regulate the nucleo-cytoplasmic partitioning of proteins. Finally, we analyze how mechanical regulation of nucleocytoplasmic transport can provide a systematic approach to the study of mechanobiology and open new avenues both in fundamental and applied research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.