Gliomas are the most frequent primary tumors of central nervous system and represent a heterogeneous group of tumors that originates from the glial cells. TP53, PTEN, and CDKN2A are important tumor suppressor genes that encode proteins involved in sustaining cellular homeostasis by different signaling pathways. Though genetic alterations in these genes play a significant role in tumorigenesis, few studies are available regarding the incidence and relation of concomitant TP53, PTEN, and CDKN2A alterations in gliomas. The purpose of this study was to evaluate the occurrence of mutation and deletion in these genes, through single-strand conformational polymorphism, array-comparative genomic hybridization, and fluorescence in situ hybridization techniques, in 69 gliomas samples. Molecular results demonstrated a significant higher prevalence of TP53, PTEN, and CDKN2A alterations in astrocytoma than other tumor subtypes, and heterozygous deletion was the most frequent event. In addition, a significant association was observed between TP53 and CDKN2A alterations (p = 0.0424), which tend to coexist in low grade astrocytomas (5/46 cases (10.9%)), suggesting that they are early events in development of these tumors, and PTEN and CDKN2A deletions (p = 0.0022), which occurred concomitantly in 9/50 (18%) patients, with CDKN2A changes preceding PTEN deletions, present preferably in high-grade gliomas.
ABSTRACT. Glioma is a term used to describe tumors derived from glial cells. These tumors are divided into subgroups based on the histological morphology and similarity of their differentiated glia cells. Traditionally, they are classified according to the World Health Organization and include astrocytomas, oligodendrogliomas, ependymomas, and oligoastrocytomas. Like most cancers, gliomas develop as a result of genetic changes that accumulate with tumor progression. Alterations in isocitrate dehydrogenase 1 (IDH1) and IDH2 were found to be relevant in the classification and prognostic of gliomas. Because of the importance of mutations in these genes, particularly in I.A. Pessôa et al. 6534©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 14 (2): 6533-6542 (2015) IDH1, in different proposals of the genesis and progression of gliomas, we analyzed the occurrence of mutations in these genes in samples obtained from patients from Belém (PA, Brazil) using polymerase chain reaction-single-strand conformation polymorphism followed by sequencing. We compared the results obtained from tumors of different malignancy grades, evaluating the significance of the associations between different variables. R132H was the only mutation found in 17.6% (6/34) of cases, including in astrocytomas, anaplastic astrocytomas, oligodendroglioma, and anaplastic oligoastrocytoma. No mutations were found in the IDH2 gene. We found no significant relationship between the identified mutations in IDH1 and the variables. Our data could not confirm that mutations in IDH1/IDH2 are indicative of malignancy and prognosis. However, the results support that the mutation in IDH1 gene was an early event in the development of gliomas, as it was found in tumors of different malignancy grades.
Ionizing radiation, such as that emitted by uranium, may cause mutations and consequently lead to neoplasia in human cells. The TP53 gene acts to maintain genomic integrity and constitutes an important biomarker of susceptibility. The present study investigated the main alterations observed in exons 4, 5, 6, 7, and 8 of the TP53 gene and adjacent introns in Amazonian populations exposed to radioactivity. Samples were collected from 163 individuals. Occurrence of the following alterations was observed: (i) a missense exchange in exon 4 (Arg72Pro); (ii) 2 synonymous exchanges, 1 in exon 5 (His179His), and another in exon 6 (Arg213Arg); (iii) 4 intronic exchanges, 3 in intron 7 (C → T at position 13.436; C → T at position 13.491; T → G at position 13.511) and 1 in intron 8 (T → G at position 13.958). Alteration of codon 72 was found to be an important risk factor for cancer development (P = 0.024; OR = 6.48; CI: 1.29–32.64) when adjusted for age and smoking. Thus, TP53 gene may be an important biomarker for carcinogenesis susceptibility in human populations exposed to ionizing radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.