Nanoparticles promise to improve the treatment of cancer through their increasingly sophisticated functionalisations and ability to accumulate in certain tumours. Yet recent work has shown that many nanomedicines fail during clinical trial. One issue is the lack of understanding of how nanoparticle designs impact their ability to overcome transport barriers in the body, including their circulation in the blood stream, extravasation into tumours, transport through tumour tissue, internalisation in the targeted cells, and release of their active cargo. Increased computational power, as well as improved multi-scale simulations of tumours, nanoparticles, and the biological transport barriers that affect them, now allow us to investigate the influence of a range of designs in biologically relevant scenarios. This presents a new opportunity for high-throughput, systematic, and integrated design pipelines powered by data and machine learning. With this paper, we review latest results in multi-scale simulations of nanoparticle transport barriers, as well as available software packages, with the aim of focussing the wider research community in building a common computational framework that can overcome some of the current obstacles facing efficient nanoparticle design.
Although life is destined to be approximately described as a self-referential form, the self-reference is invalidated and life avoids a contradiction. Since life does not include any contradiction, it reveals a unity as a whole. Since life is not a self-circulation, it implements diversity and evolvability. Here we show life as invalidated self-reference by constructing a model cell driven by damaged damage. Since life is always close to destruction, it exhibits both of the amoebic motion and the intelligent Physarum-like behavior.
We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. Our work aims to decrease both the time and cost required to develop nanoparticle designs. EVONANO includes a simulator to grow tumours, extract representative scenarios, and simulate nanoparticle transport through these scenarios in order to predict nanoparticle distribution. The nanoparticle designs are optimised using machine learning to efficiently find the most effective anti-cancer treatments. We demonstrate EVONANO with two examples optimising the properties of nanoparticles and treatment to selectively kill cancer cells over a range of tumour environments. Our platform shows how in silico models that capture both tumour and tissue-scale dynamics can be combined with machine learning to optimise nanomedicine.
Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.