Emerging contaminants have been considered one of the main concerns for ensuring the quality of water around the world. This work presents the results of 10 years of analyses carried out in the state of São Paulo (Brazil) that has the high population density and intense agricultural and industrial activities. In this work 58 compounds (9 hormones, 14 pharmaceuticals and personal care products, 8 industrial compounds, 17 pesticides and 10 illicit drugs) were determined from 2006 to 2015 in 708 samples including raw and treated sewage, surface and ground and drinking waters. A preliminary risk assessment for aquatic life protection identified potential risks for caffeine, paracetamol, diclofenac, 17α-ethynylestradiol, 17β-estradiol, estriol, estrone, testosterone, triclosan, 4-n-nonylphenol, bisphenol A, atrazine, azoxystrobin, carbendazim, fipronil, imidacloprid, malathion and tebuconazole. Drinking water criteria were available only for 22 compounds and for them no adverse effects were expected at the concentrations found, except for 17β-estradiol.
Estrogenic Endocrine Disrupting Chemicals (EDCs) are a concern due to their ubiquity and recognized adverse effects to humans and wildlife. Methods to assess exposure to and associated risks of their presence in aquatic environment are still under development. The aim of this work is to assess estrogenicity of raw and treated waters with different degrees of pollution. Chemical analyses of selected EDCs were performed by liquid chromatography-tandem mass spectrometry, and estrogenic activity was evaluated using in vitro bioluminescent yeast estrogen assay (BLYES). Most raw water samples (18/20) presented at least one EDC and 16 rendered positive in BLYES. When EDCs were detected, the bioassay usually provided a positive response, except when only bisphenol A was detected at low concentrations. The highest values of estrogenic activity were detected in the most polluted sites. The maximum estrogenic activity observed was 8.7 ng equiv. of E2 L(-1). We compared potencies observed in the bioassay to the relative potency of target compounds and their concentrations failed to fully explain the biological response. This indicates that bioassay is more sensitive than the chemical approach either detecting estrogenic target compounds at lower concentrations, other non-target compounds or even synergistic effects, which should be considered on further investigations. We have not detected either estrogenic activity or estrogenic compounds in drinking water. BLYES showed good sensitivity with a detection limit of 0.1 ng equiv. E2 L(-1) and it seems to be a suitable tool for water monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.