A new compact satellite spectrometer dedicated to monitoring terrestrial atmospheric ozone (ozonometer) is in preparation for the Russian Geophysics Program. Four instruments at four satellites (Ionosphere) are intended to monitor the total ozone content by measuring spectra of scattered solar radiation in nadir. The spectrometer is based on the Rowland scheme with a concave holographic diffraction grating. It covers the near UV and visible range of the spectrum, 300-500 nm, with a spectral resolution of ∼0.3 nm. At present, a qualification model has been manufactured and tested. We introduce the description of the instrument and the results of laboratory and ground-based atmospheric calibrations. The ozone amount retrieved from atmospheric measurements using the differential optical absorption spectroscopy (DOAS) method is in good agreement with that measured by the collocated Brewer spectrophotometer and ozone monitoring instrument on board the Aura satellite.
An algorithm for selecting the correct starting point for computer optimization of a two-mirror scanner with a meniscus lens is developed for use in laser machining. This algorithm performs joint analysis of aplanatism condition fulfillment and the field characteristics of the ghosts reflected from the meniscus surfaces back into the scanner mirror space. For integrity, all equations and estimates are given with respect to a major parameter: the curvature of the input surface. The second powerful tool for the optimization is the distance from the meniscus to the scanning mirrors, though its applicability is significantly limited by design considerations. Several scanner variants used to perform basic laser machining processes at various power levels are considered in detail. It is found that, for a fixed output numerical aperture, compacting the scanner always improves its optical performance. In general, compacting is an alternative to using scanners in systems with high-power laser sources. The results of this work are valid for any optical material and wavelength and are particularly relevant for systems based on CO 2 lasers, in which such scanners remain widely used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.