A neurobiological account of cognitive vulnerability for recurrent depression is presented based on recent developments of resting state neural networks. We propose that alterations in the interplay between task positive (TP) and task negative (TN) elements of the Default Mode Network (DMN) act as a neurobiological risk factor for recurrent depression mediated by cognitive mechanisms. In the framework, depression is characterized by an imbalance between TN-TP components leading to an overpowering of TP by TN activity. The TN-TP imbalance is associated with a dysfunctional internally-focused cognitive style as well as a failure to attenuate TN activity in the transition from rest to task. Thus we propose the TN-TP imbalance as overarching neural mechanism involved in crucial cognitive risk factors for recurrent depression, namely rumination, impaired attentional control, and cognitive reactivity. During remission the TN-TP imbalance persists predisposing to vulnerability of recurrent depression. Empirical data to support this model is reviewed. Finally, we specify how this framework can guide future research efforts.
Experiencing depression symptoms, even at mild to moderate levels, is associated with maladaptive outcomes for adolescents. We used network analysis to evaluate which symptoms (and associations between symptoms) are most central to adolescent depression. Participants were part of a large, diverse community sample (N = 1,409) of adolescents between 13 and 19 years of age. Network analysis was used to identify the most central symptoms (nodes) and associations between symptoms (edges) assessed by the Children's Depression Inventory. We also evaluated these centrality indicators for network robustness using stability and accuracy tests, associated symptom centrality with mean levels of symptoms, and examined potential differences between the structure and connectivity of depression networks in boys and girls. The most central symptoms in the network were self-hatred, loneliness, sadness, and pessimism. The strongest associations between symptoms were sadness-crying, anhedonia-school dislike, sadness-loneliness, school work difficulty-school performance decrement, self-hatred-negative body image, sleep disturbance-fatigue, and self-deprecation-self-blame. The network was robust to stability and accuracy tests. Notably, symptom centrality and mean levels of symptoms were not associated. Boys and girls' networks did not differ in levels of connectivity, though the link between body image and self-hatred was stronger in girls than boys. Self-hatred, loneliness, sadness, and pessimism were the most central symptoms in adolescent depression networks, suggesting that these symptoms (and associations between symptoms) should be prioritized in theoretical models of adolescent depression and could also serve as important treatment targets for adolescent depression interventions.
There is increasing interest in spontaneous thought, namely task-unrelated or rest-related mental activity. Spontaneous thought is an umbrella term for processes like mindwandering, involuntary autobiographical memory, and daydreaming, with evidence elucidating adaptive and maladaptive consequences. In this theoretical framework, we propose that, apart from its positive functions, spontaneous thought is a precursor for cognitive vulnerability in individuals who are at-risk for mood disorders. Importantly, spontaneous thought mostly focuses on unattained goals and evaluates the discrepancy between current and desired status (Klinger, 1971, 2013a). In individuals who stably (i.e., trait negative affectivity) or transitorily (i.e., stress) experience negative emotions in reaction to goal-discrepancy, spontaneous thought fosters major cognitive vulnerabilities (e.g., rumination, hopelessness, low self-esteem, and cognitive reactivity) which, in turn, enhance depression. Furthermore, we also highlight preliminary links between spontaneous thought and bipolar disorder. The evidence for this framework is reviewed and we discuss theoretical and clinical implications of our proposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.