Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF) enhance plant nutrition by providing especially phosphorus, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species of AMF domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for nutrient supply in soybean (Glycine max L.) and cotton (Gossypium hirsutum L.) when compared with conventional chemical fertilization under field conditions. The experiments were carried out in a completely randomized block design with five treatments: Fertilizer, AMF, AMF with Fertilizer, AMF with 1/2 Fertilizer, and the Control with non-inoculated and non-fertilized plants. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth, nutrient absorption and yield. The results showed that AMF inoculation increased around 20 % of root colonization in both soybean and cotton; nutrients analyses in vegetal tissues showed increase of P and nitrogen content in inoculated plants, these results reflect in a higher yield. Our results showed that, AMF inoculation increase the effectiveness of fertilizer application in soybean and reduce the fertilizer dosage in cotton.
Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.
This study investigated the protective effects of secondary bacterial metabolites, produced by Pseudomonas sp. (bacterium strain LN), on citrus canker disease caused by Xanthomonas axonopodis pv. citri (Xac 306). The LN bacteria strain was cultured in liquid medium and the supernatant free-cells was treated with methanol (AMF) and ethyl acetate (AEF), respectively, and then the extract was concentrated, filtrated, lyophilized and fractionated by vacuum liquid chromatography (VLC). After VLC, eight fractions were obtained. All fractions' activity against Xac 306 by agar well diffusion assay and minimum inhibitory concentration but in different concentrations were tested. Cytotoxicity effects were observed in all fractions in 50 µg•mL −1 concentration. The comet assay demonstrated that the fractions EAF, VLC2 and VLC3 presented no genotoxic effects at tested concentrations. In plants only VLC3 showed significant results (p < 0.05), reducing the incidence of citrus canker lesions.
Huanglongbing (HLB) is the most destructive disease of citrus worldwide and an efficient management strategy to control it has not yet been established. The potential of pseudomonads to suppress plant pathogens is well known and the secondary metabolites they produce represent new alternatives of compounds to control plant diseases. The main challenge is to find new compounds that show strong antibiotic activity, low toxicity to plants and little or no harm to the environment. The objectives of the present study were to determine the potential of the F4A fraction from Pseudomonas aeruginosa to control HLB and to induce systemic resistance. Low molecular weight compounds with antimicrobial activity were purified with organic solvent, thin layer chromatography (TLC) and normal and reverse phase chromatography. Compounds present in the F4A fraction were mainly obtained by thin-layer chromatography (TLC) and Preparative-High Performance Liquid Chromatography (HPLC-prep). To assess their biological activities, conventional and quantitative polymerase chain reaction were usxed. The F4A was sprayed on citrus trees infected with the causal agent of HLB, 'Candidatus Liberibacter asiaticus' under greenhouse conditions. The bacterial titers were reduced and defense genes were induced in leaves of trees treated with F4A, as assed by PCR analysis. The results showed that F4A (pseudomonads secondary metabolites) may provide a useful tool for the management of HLB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.