This paper presents BUT ReverbDB -a dataset of real room impulse responses (RIR), background noises and re-transmitted speech data. The retransmitted data includes LibriSpeech test-clean, 2000 HUB5 English evaluation and part of 2010 NIST Speaker Recognition Evaluation datasets. We provide a detailed description of RIR collection (hardware, software, post-processing) that can serve as a "cook-book" for similar efforts. We also validate BUT ReverbDB in two sets of automatic speech recognition (ASR) experiments and draw conclusions for augmenting ASR training data with real and artificially generated RIRs. We show that a limited number of real RIRs, carefully selected to match the target environment, provide results comparable to a large number of artificially generated RIRs, and that both sets can be combined to achieve the best ASR results. The dataset is distributed for free under a non-restrictive license and it currently contains data from 8 rooms, which is growing. The distribution package also contains a Kaldi-based recipe for augmenting publicly available AMI closetalk meeting data and test the results on an AMI single distant microphone set, allowing it to reproduce our experiments.
We present two techniques that are shown to yield improved Keyword Spotting (KWS) performance when using the ATWV/MTWV performance measures: (i) score normalization, where the scores of different keywords become commensurate with each other and they more closely correspond to the probability of being correct than raw posteriors; and (ii) system combination, where the detections of multiple systems are merged together, and their scores are interpolated with weights which are optimized using MTWV as the maximization criterion. Both score normalization and system combination approaches show that significant gains in ATWV/MTWV can be obtained, sometimes on the order of 8-10 points (absolute), in five different languages. A variant of these methods resulted in the highest performance for the official surprise language evaluation for the IARPA-funded Babel project in April 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.