The complex trans-[(2,9-dipyridyl-1,10phenanthroline)(CH 3 CN) 2 Ru](OTf) 2 was synthesized and tested as a homogeneous hydrodeoxygenation catalyst for the conversion of biomass-derived furfuryl alcohol and furfuryl acetate to 1,4pentanediol (as the primary target compound) and cyclopentanol (formed by the competing Piancatelli rearrangement) in aqueous reaction medium at elevated temperature (150−200 °C) and hydrogen pressure (800 psi = 5.12 MPa). Catalytic reactions using furfuryl alcohol as a substrate were limited by the formation of solid resins with the product yields showing a strong negative correlation with increasing substrate concentration and maximum yields of 1,4-pentanediol and cyclopentanol being 23 and 41%, respectively. A two-level full factorial design of experiments study with four independent input variables (temp., time, [cat.],[substrate]) and a center point was carried out for the conversion of furfuryl acetate, showing good reproducibility between replicates and no humin formation. This enabled a full statistical analysis of the input variable impact on product distribution and yield. The maximum yields of 1,4-pentanediol and cyclopentanol using furfuryl acetate as a substrate are 68 and 35%, respectively. The decreased self-reactivity of furfuryl acetate versus furfuryl alcohol dramatically increases the yields of target products but still shows a strong negative correlation of the yield of the desired products with increasing substrate concentration.
In this work, the effect of controlled thermal treatment to tune biochar surface properties such as area/porosity, functionalities and reactivity was investigated. TG-MS, CHN, Raman, IR, BET, Zeta and SEM analyses suggested that thermal treatment led to the decomposition of an organic complex/amorphous phase to produce micropores based on graphene nanostructures and a strong increase on surface area from 3mg for biochar to 30, 408 and 590mg, at 400, 600 and 800°C, respectively. The treatment also led to a gradual decrease on oxygen content from 27 to 14wt% at 800°C due to decomposition of surface functionalities changing surface properties such as zeta potential, adsorption of anionic and cationic species and an increase on the activity for sulfide oxidation which is discussed in terms of increase in surface area and the presence of surface redox quinone groups.
Biomass conversion to organic products is expected to be a core technology for the future sustainable society. Still, published studies show that the energy cost and environmental impact of making...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.