Recent advances in the treatment of Chagas disease have followed combinations of drugs that act synergistically against infection, predominantly including benznidazole (BNZ) and azoles derivatives. Possible incompatibilities between these drugs, slow dissolution of BNZ and dose adjustment difficulties are technological obstacles to the development of multidrug formulations. Thus, in the present study, BNZ pellets were developed using extrusion spheronization for immediate drug delivery. Preformulation studies were then performed using thermal analysis and infrared spectroscopy and compatibility between the drug and selected excipients (polyethylene glycol 6000, sodium starch glycolate, microcrystalline cellulose and sodium croscarmellose) was investigated. No chemical decomposition of BNZ was observed, even in samples submitted to wet granulation and thermal stress. Subsequently, formulations were elaborated according to a simplex lattice experimental design using polyethylene glycol, sodium starch glycolate and sodium croscarmellose as disintegrating agents. In these experiments, BNZ pellets showed appropriate physicochemical characteristics, including high drug load capacity and excellent flow properties. The mixture experimental design allowed identification of adequate compositions of disintegrating agents and achieved rapid disintegration and dissolution of pellets. Optimum performance was achieved using polyethylene glycol and sodium croscarmellose at 5.0% w/w each. The present BNZ pellets are versatile alternatives to treat Chagas disease and provide insights into the preparation of multidrug systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.