Streptomyces albus J1074 is one of the most popular and convenient hosts for heterologous expression of gene clusters directing the biosynthesis of various natural metabolic products, such as antibiotics. This fuels interest in elucidation of genetic mechanisms that may limit secondary metabolism in J1074. Here, we report the generation and initial study of J1074 mutant, deficient in gene bldA for tRNA, the only tRNA capable of decoding rare leucyl TTA codon in Streptomyces. The bldA deletion in J1074 resulted in a highly conditional Bld phenotype, with depleted formation of aerial hyphae on certain solid media. In addition, bldA mutant of J1074 was unable to produce endogenous antibacterial compounds and two heterologous antibiotics, moenomycin and aranciamycin, whose biosynthesis is directed by TTA-containing genes. We have employed a new TTA codon-specific β-galactosidase reporter system to provide genetic evidence that J1074 bldA mutant is impaired in translation of TTA. In addition, we have discussed the possible reasons for differences in the phenotypes of bldA mutants described here and in previous studies, providing knowledge to study bldA-based regulation of antibiotic biosynthesis.
The AdpA protein from a streptomycin producer Streptomyces griseus is a founding member of the AdpA family of pleiotropic regulators, known to be ubiquitously present in streptomycetes. Functional genomic approaches revealed a huge number of AdpA targets, leading to the claim that the AdpA regulon is the largest one in bacteria. The expression of adpA is limited at the level of translation of the rare leucyl UUA codon. All known properties of AdpA regulators were discovered on a few streptomycete strains. There are open questions about the true abundance and diversity of AdpA across actinobacterial taxa (and beyond) and about the possible evolutionary forces that shape the AdpA orthologous group in Streptomyces. Here we show that, with respect to the TTA codon, streptomycete adpA is more diverse than has been previously thought, as the genes differ in presence/position of this codon. Reciprocal best hits to AdpA can be found in many actinobacterial orders, with a domain organization resembling that of the prototypical AdpA, but other configurations also exist. Diversifying positive selection was detected within the DNA-binding (AraC) domain in adpA of Streptomyces origin, most likely affecting residues enabling AdpA to recognize a degenerate operator. Sequence coding for putative glutamine amidotransferase (GATase-1) domain also shows signs of positive selection. The two-domain organization of AdpA most likely arose from a fusion of genes encoding separate GATase-1 and AraC domains. Indeed, we show that the AraC domain retains a biological function in the absence of the GATase-1 part. We suggest that acquisition of the regulatory role by TTA codon is a relatively recent event in the evolution of AdpA, which coincided with the rise of the Streptomycetales clade and, at present, is under relaxed selective constraints. Further experimental scrutiny of our findings is invited, which should provide new insights into the evolution and prospects for engineering of an AdpA-centered regulatory network.
BackgroundThe gene bldA for leucyl is known for almost 30 years as a key regulator of morphogenesis and secondary metabolism in genus Streptomyces. Codon UUA is the rarest one in Streptomyces genomes and is present exclusively in genes with auxiliary functions. Delayed accumulation of translation-competent is believed to confine the expression of UUA-containing transcripts to stationary phase. Implicit to the regulatory function of UUA codon is the assumption about high accuracy of its translation, e.g. the latter should not occur in the absence of cognate . However, a growing body of facts points to the possibility of mistranslation of UUA-containing transcripts in the bldA-deficient mutants. It is not known what type of near-cognate tRNA(s) may decode UUA in the absence of cognate tRNA in Streptomyces, and whether UUA possesses certain inherent properties (such as increased/decreased accuracy of decoding) that would favor its use for regulatory purposes.FindingsHere we took bioinformatic approach to address these questions. We catalogued the entire complement of tRNA genes from several relevant Streptomyces and identified genes for posttranscriptional modifications of tRNA that might be involved in UUA decoding by cognate and near-cognate tRNAs.ConclusionsBased on tRNA gene content in Streptomyces genomes, we propose possible scenarios of UUA codon mistranslation. UUA is not associated with an increased rate of missense errors as compared to other leucyl codons, contrasting general belief that low-abundant codons are more error-prone than the high-abundant ones.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-016-2683-6) contains supplementary material, which is available to authorized users.
Actinobacteria of genus Streptomyces attract great interest of researchers. Their genomes encode cryptic gene clusters for as-yet-unknown antibiotics; heterologous expression of metagenomic libraries in model Streptomyces strains allow to discover new classes of compounds. However, it is crucial to understand the rules that govern codon usage in streptomycete genes, if we are to maximize the chances and level of expression of foreign genes in Streptomyces. In this study we addressed two questions related to codon usage in streptomycete genomes. First, we explored if there are patterns of dicodon usage in Streptomyces. Second, we searched for significant differences in patterns of codon substitution in different families of orthologous genes at different phylogenetic depth and degree of essentiality. To this end, we revealed several codon context rules, which are mainly associated with anomalous frequency of G/C downstream of C-ending codons. We developed a new bioinformatics tool, based on previously described bubble plot approach, allowing matrix-like visualization of codon substitution patterns in the dataset. Using this tool, we show that transcriptional factors of AdpA family carry significant fraction of nonsynonymous substitutions, although changes in its pattern for different actinobacterial orders (and as compared to Streptomycetales) do not follow simple rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.