Over the past few decades human-computer interaction has become more important in our daily lives and research has developed in many directions: memory research, depression detection, and behavioural deficiency detection, lie detection, (hidden) emotion recognition etc. Because of that, the number of generic emotion and face databases or those tailored to specific needs have grown immensely large. Thus, a comprehensive yet compact guide is needed to help researchers find the most suitable database and understand what types of databases already exist. In this paper, different elicitation methods are discussed and the databases are primarily organized into neat and informative tables based on the format.
We are proposing a new facial expression recognition model which introduces 30+ detailed facial expressions recognisable by any artificial intelligence interacting with a human. Throughout this research, we introduce two categories for the emotions, namely, dominant emotions and complementary emotions. In this research paper the complementary emotion is recognised by using the eye region if the dominant emotion is angry, fearful or sad, and if the dominant emotion is disgust or happiness the complementary emotion is mainly conveyed by the mouth. In order to verify the tagged dominant and complementary emotions, randomly chosen people voted for the recognised multi-emotional facial expressions. The average results of voting are showing that 73.88% of the voters agree on the correctness of the recognised multi-emotional facial expressions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.