Background: Monitoring the timing of seedling emergence and early development via high-throughput phenotyping with computer vision is a challenging topic of high interest in plant science. While most studies focus on the measurements of leaf area index or detection of specific events such as emergence, little attention has been put on the identification of kinetics of events of early seedling development on a seed to seed basis. Result: Imaging systems screened the whole seedling growth process from the top view. Precise annotation of emergence out of the soil, cotyledon opening, and appearance of first leaf was conducted. This annotated data set served to train deep neural networks. Various strategies to incorporate in neural networks, the prior knowledge of the order of the developmental stages were investigated. Best results were obtained with a deep neural network followed with a long short term memory cell, which achieves more than 90% accuracy of correct detection. Conclusion: This work provides a full pipeline of image processing and machine learning to classify three stages of plant growth plus soil on the different accessions of two species of red clover and alfalfa but which could easily be extended to other crops and other stages of development.
Background: The production and availability of annotated data sets are indispensable for training and evaluation of automatic phenotyping methods. The need for complete 3D models of real plants with organ-level labeling is even more pronounced due to the advances in 3D vision-based phenotyping techniques and the difficulty of full annotation of the intricate 3D plant structure. Results: We introduce the ROSE-X data set of 11 annotated 3D models of real rosebush plants acquired through X-ray tomography and presented both in volumetric form and as point clouds. The annotation is performed manually to provide ground truth data in the form of organ labels for the voxels corresponding to the plant shoot. This data set is constructed to serve both as training data for supervised learning methods performing organ-level segmentation and as a benchmark to evaluate their performance. The rosebush models in the data set are of high quality and complex architecture with organs frequently touching each other posing a challenge for the current plant organ segmentation methods. We report leaf/stem segmentation results obtained using four baseline methods. The best performance is achieved by the volumetric approach where local features are trained with a random forest classifier, giving Intersection of Union (IoU) values of 97.93% and 86.23% for leaf and stem classes, respectively. Conclusion: We provided an annotated 3D data set of 11 rosebush plants for training and evaluation of organ segmentation methods. We also reported leaf/stem segmentation results of baseline methods, which are open to improvement. The data set, together with the baseline results, has the potential of becoming a significant resource for future studies on automatic plant phenotyping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.