Background and purpose: Pharmacological validation of novel functions for the a 2A -, a 2B -, and a 2C -adrenoceptor (AR) subtypes has been hampered by the limited specificity and subtype-selectivity of available ligands. The current study describes a novel highly selective a 2C -adrenoceptor antagonist, JP-1302 (acridin-9-yl-[4-(4-methylpiperazin-1-yl)-phenyl]amine). Experimental approach: Standard in vitro binding and antagonism assays were employed to demonstrate the a 2C -AR specificity of JP-1302. In addition, JP-1302 was tested in the forced swimming test (FST) and the prepulse-inhibition of startle reflex (PPI) model because mice with genetically altered a 2C -adrenoceptors have previously been shown to exhibit different reactivity in these tests when compared to wild-type controls. Key results: JP-1302 displayed antagonism potencies (K B values) of 1,500, 2,200 and 16 nM at the human a 2A -, a 2B -, and a 2C -adrenoceptor subtypes, respectively. JP-1302 produced antidepressant and antipsychotic-like effects, i.e. it effectively reduced immobility in the FST and reversed the phencyclidine-induced PPI deficit. Unlike the a 2 -subtype non-selective antagonist atipamezole, JP-1302 was not able to antagonize a 2 -agonist-induced sedation (measured as inhibition of spontaneous locomotor activity), hypothermia, a 2 -agonist-induced mydriasis or inhibition of vas deferens contractions, effects that have been generally attributed to the a 2A -adrenoceptor subtype. In contrast to JP-1302, atipamezole did not antagonize the PCPinduced prepulse-inhibition deficit. Conclusions and implications:The results provide further support for the hypothesis that specific antagonism of the a 2C -adrenoceptor may have therapeutic potential as a novel mechanism for the treatment of neuropsychiatric disorders.
Starting from two acridine compounds identified in a high-throughput screening campaign (1 and 2, Table 1), a series of 4-aminoquinolines was synthesized and tested for their properties on the human alpha(2)-adrenoceptor subtypes (alpha(2A), alpha(2B), and alpha(2C)). A number of compounds with good antagonist potencies against the alpha(2C)-adrenoceptor and excellent subtype selectivities over the other two subtypes were discovered. For example, (R)-{4-[4-(3,4-dimethylpiperazin-1-yl)phenylamino]quinolin-3-yl}methanol 6j had an antagonist potency of 8.5 nM against, and a subtype selectivity of more than 200-fold for, the alpha(2C)-adrenoceptor. Investigation of the structure-activity relationship identified a number of structural features, the most critical of which was an absolute need for a substituent in the 3-position of the quinoline ring. The 3-position on the piperazine ring was also found to play an appreciable role, as substitutions in that position exerted a significant and stereospecific beneficial effect on the alpha(2C)-adrenoceptor affinity and potency. Replacing the piperazine ring proved difficult, with 1,4-diazepanes representing the only viable alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.