Analysis was performed for a large-break loss-of-coolant accident (LOCA) in the APR1400 (Advanced Power Reactor 1400 MWe) with the thermal-hydraulic analysis code RELAP5/ MOD3.2.2 and the severe accident analysis code MAAP4.03. The two codes predicted different sequences for essentially the same initiating condition. As for the break flow and the emergency core cooling (ECC) flow rates, MAAP4.03 predicted considerably higher values in the initial stage than RELAP5/ MOD3.2.2. It was considered that the differing break flow and ECC flow rates would cause the LOCA sequences to deviate from one another between the two codes. Hence, the break flow model in MAAP4.03 was modified with partly implementing the two-phase homogeneous critical flow model and adopting a correction term. The ECC flow model in MAAP4.03 was also varied by changing the hardwired friction factor through the sensitivity study. The modified break flow and ECC flow models yielded more consistent calculational results between RELAP5/MOD3.2.2 and MAAP4.03. It was, however, found that the resultant effect is rather limited unless more mechanistic treatments are done for the primary system in MAAP4.03.
It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.
Oscillating Water Column (OWC) Wave Energy Converters (WEC) harness electricity through a Power-Take-Off (PTO) system from the induced-airflow by seawater oscillating inside a chamber. In general, an air chamber with a relatively small cross-sectional area is required compared to seawater chamber to obtain highvelocity air in the PTO system, and in order to simulate an accurate air flow rate in the air chamber, a threedimensional study is required. In this study, the dynamic response of OWC-WEC that is equipped with the channel of seawater exchange for the case of irregular waves has been numerically studied. The open source CFD software, OLAFLOW for the simulation of wave dynamics to the openFOAM and FOAM-extend communities, was used to simulate the interaction between the device and irregular waves. Based on the numerical simulation results, we discussed the fluctuation characteristics of three dimensional air flow in the air-chamber, wave deformation around the structure and the seawater flow inside the channel of seawater exchange. The numerical results the maximum air flow velocity in the air-chamber increases as the Ursell value of the significant wave increases, and the velocity of airflow flowing out from the inside of air chamber to the outside is greater than the speed of flowing into the air chamber from the outside.
Radiative cooling technology is extensively researched as a green technology, leveraging outer space as a thermodynamic resource. Recently, integrating thermoelectric generators (TEGs) and radiative coolers (RCs) are proposed to generate power using the temperature difference between the ambient and the radiative cooler. However, current TEG‐RC systems only utilize one thermodynamic resource, resulting in suboptimal efficiency. It proposes a parabolic mirror‐assisted TEG‐RC system that fully utilizes both the Sun and outer space as thermodynamic resources. The system places the hot side of the TEG, covered by a solar absorber (SA), at the focal point of the parabolic mirror, while the RC is located on the cold side of the TEG. Theoretical and experimental results reveal the optimal ratio between the RC and SA sizes to balance the power mismatch between cooling and heating powers. It also finds that the number of TEG stacks significantly affects power generation efficiency and determines the optimal number. Outdoor measurements demonstrate exceptional power generation during the daytime, which is an unprecedented achievement. This study also demonstrates the further enhancement in power generation efficiency when the proposed system is integrated with concentrated solar cells instead of the SA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.