Cryptographic protocol design in a two-party setting has often ignored the possibility of simultaneous message transmission by each of the two parties (i.e., using a duplex channel). In particular, most protocols for two-party key exchange have been designed assuming that parties alternate sending their messages (i.e., assuming a bidirectional half-duplex channel). However, by taking advantage of the communication characteristics of the network it may be possible to design protocols with improved latency. This is the focus of the present work.We present three provably-secure protocols for two-party authenticated key exchange (AKE) which require only a single round. Our first, most efficient protocol provides key independence but not forward secrecy. Our second scheme additionally provides forward secrecy but requires some additional computation. Security of these two protocols is analyzed in the random oracle model. Our final protocol provides even stronger security guarantees than our second protocol, but does not require random oracles. This scheme is only slightly less efficient (from a computational perspective) than the previous ones. Our work provides the first provably-secure one-round protocols for two-party AKE which achieve forward secrecy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.