In many countries manpower problems in the field of health care are regular items on the agenda of policy makers. To avoid mismatches between demand of care and supply of care on national and regional levels, manpower planning models and methods are used to determine adequate numbers of medical specialists to fulfill the future demand of care. Inadequate or inefficient allocation of manpower to various departments in an organization or workplace can lead to undesired outcomes which may include: down time, reduced productivity, workers fatigue, increased production costs, etc. As a result of the above stated problem, there is need to devise a statistical model that will ensure optimal allocation of manpower. In this study, the optimum allocation of two hundred and fifty two general nurses to fifteen wards at a hospital code named WCH located in South-South geopolitical zone, Nigeria was achieved using statistical process control. The study involved the analysis of data obtained from our hub of study for a period of two months. The C-chart was used to check if the process of allocation was in control or not. The result obtained from the study showed that the manpower allocation process was out of statistical control as the allocation of the children emergency ward was outside the upper control limit of the c-chart plot.
Local welders in Nigeria are prone to poor quality weldment because of their lack of welding technical skills. When these local welders carry out their welding operation, the welded joints are considered to be good enough because the metal materials welded together are seen to be good and satisfactory. In most case, when these welded joints have not fully served their service life, these materials fail due to the poor quality of the weldment. Material quality can easily be assessed by inspecting the microstructure of the weldment. In this wok, mild steel welding process parameters were optimized using multivariate linear regression (MLR). The study involves the determination of the suitable set of conditions for the welding process parameters that would give the optimum weld of mild steel (low carbon steel) using Gas Metal Arc welding (GMAW) technique and obtain a relationship between the three welding process parameters and the ultimate tensile strength and Brinell hardness number. For this reason, an experimental study was carried out using nine samples of the specimen of mild steel. The experimental and predicted results show that arc voltage and gas flow rate affect the ultimate tensile strength and the Brinell hardness number of mild steel. The maximum ultimate tensile strength and Brinell hardness number were Odinikuku et al.; JERR, 10(2): 43-50, 2020; Article no.JERR.54101 44 obtained at 180A, 15V and 20l/min. It was also observed that the ultimate tensile strength decreases with increases in arc voltage and gas flow rate. But these two parameters tend to have a positive effect on the Brinell hardness number. Original Research Article
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.