Pancreatic cancer is still a disease of high mortality despite availability of diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. MUC1 and MUC4 are high molecular weight transmembrane mucins. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis. We evaluated the methylation status of MUC1 and MUC4 promoter regions in pancreatic tissue samples from 169 patients with various pancreatic lesions by the methylation specific electrophoresis (MSE) method. These results were compared with expression of MUC1 and MUC4, several DNA methylation/demethylation factors (e.g. ten-eleven translocation or TET, and activation-induced cytidine deaminase or AID) and CAIX (carbonic anhydrase IX, as a hypoxia biomarker). These results were also analyzed with clinicopathological features including time of overall survival of PDAC patients. We show that the DNA methylation status of the promoters of MUC1 and MUC4 in pancreatic tissue correlates with the expression of MUC1 and MUC4 mRNA. In addition, the expression of several DNA methylation/demethylation factors show a significant correlation with MUC1 and MUC4 methylation status. Furthermore, CAIX expression significantly correlates with the expression of MUC1 and MUC4. Interestingly, our results indicate that low methylation of MUC1 and/or MUC4 promoters correlates with decreased overall survival. This is the first report to show a relationship between MUC1 and/or MUC4 methylation status and prognosis. Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with PDAC.
Background: Liquid-based cytology (LBC) is now a widely used method for cytologic screening and cancer diagnosis. Since the cells are fixed with alcohol-based fixatives, and the specimens are stored in a liquid condition, LBC specimens are suitable for genetic analyses. Methods: Here, we established a small cancer gene panel, including 60 genes and 17 microsatellite markers for next-generation sequencing, and applied to residual LBC specimens obtained by endometrial cancer screening to compare with corresponding formalin-fixed paraffin-embedded (FFPE) tissues. Results: A total of 49 FFPE and LBC specimens (n = 24) were analyzed, revealing characteristic mutations for endometrial cancer, including PTEN, CTNNB1, PIK3CA, and PIK3R1 mutations. Eight cases had higher scores for both tumor mutation burden (TMB) and microsatellite instability (MSI), which agree with defective mismatch repair (MMR) protein expression. Paired endometrial LBC, and biopsied and/or resected FFPE tissues from 7 cases, presented almost identical mutations, TMB, and MSI profiles in all cases. Conclusion: These findings demonstrate that our ad hoc cancer gene panel enabled the detection of therapeutically actionable gene mutations in endometrial LBC and FFPE specimens. Endometrial cancer LBC specimens offer an alternative and affordable source of molecular testing materials.
It is often difficult to histologically differentiate among endometrial dedifferentiated carcinoma (DC), endometrioid carcinoma (EC), serous carcinoma (SC), and carcinosarcoma (CS) due to the presence of solid components. In this study, we aimed to categorize these carcinomas according to The Cancer Genome Atlas (TCGA) classification using a small custom-made cancer genome panel (56 genes and 17 microsatellite regions) for integrated molecular diagnosis. A total of 36 endometrial cancer cases with solid components were assessed using IHC, next-generation sequencing (NGS), and the custom-made panel. Among 19 EC cases, six were categorized as MMR-deficient (MMR-d) and eight were classified as having a nonspecific molecular profile. Three EC cases were classified as POLE mutation (POLEmut)-type, which had a very high tumor mutation burden (TMB) and low microsatellite instability (MSI). Increased TMB and MSI were observed in all three DC cases, classified as MMR-d with mutations in MLH1 and POLD1. Except for one case classified as MMR-d, all SC cases exhibited TP53 mutations and were classified as p53 mutation-type. SC cases also exhibited amplification of CCND1, CCNE1, and MYC. CS cases were classified as three TCGA types other than the POLEmut-type. The IHC results for p53 and ARID1A were almost consistent with their mutation status. NGS analysis using a small panel enables categorization of endometrial cancers with solid proliferation according to TCGA classification. As TCGA molecular classification does not consider histological findings, an integrated analytical procedure including IHC and NGS may be a practical diagnostic tool for endometrial cancers.
Background Genomic examination of cytology specimens is often performed on cell blocks or conventional smears rather than on liquid‐based cytology (LBC) specimens. Since LBC specimens preserve high‐quality DNA, cancer genome profiling using next‐generation sequencing (NGS) is also attainable from residual LBC specimens. One of the advantages of using LBC specimens for NGS is that it allows direct extraction of DNA from residual specimens, avoiding a sacrifice of smear slides and minimizing genomic profiling processing time. Methods Endometrial LBC specimens were subjected to NGS analysis to validate the practicality of rapid cancer genomic profiling in a pathology laboratory. The extracted DNA was subjected to NGS using a customized cancer gene panel comprising 56 genes and 17 microsatellite regions. The workflow strategy was defined, and the processing time estimated for specimen sampling, cell counting, NGS run, and genome profiling. Results NGS analysis of most LBC specimens revealed somatic mutations, tumor mutation burden, and microsatellite instability, which were almost identical to those obtained from formalin‐fixed paraffin‐embedded tissues. The processing time for direct NGS analysis and cancer genomic profiling of the residual LBC specimens was approximately 5 days. Conclusion The residual LBC specimens collected using endometrial cytology were verified to carry a high tumor fraction for NGS analysis and could serve as an alternate source for rapid molecular classification and diagnosis of endometrial cancers, as a routine process in a pathology laboratory.
Objectives The aim of this study was to further examine the utility of mucin expression profiles as prognostic factors in PDAC. Methods Mucin (MUC) expression was examined by immunohistochemistry (IHC) analysis in endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) specimens obtained from 114 patients with PDAC. The rate of expression of each mucin was compared with clinicopathologic features. Results The expression rates of mucins in cancer lesions were MUC1, 87.7%; MUC2, 0.8%; MUC4, 93.0%; MUC5AC, 78.9%; MUC6, 24.6%; and MUC16, 67.5%. MUC1 and MUC4 were positive and MUC2 was negative in most PDACs. Patients with advanced stage of PDAC with MUC5AC expression had a significantly better outcome than those who were MUC5AC-negative (P=0.002).With increasing clinical stage, total MUC6 expression decreased (P for trend=0.001) and MUC16 cytoplasmic expression increased (P for trend=0.02). The prognosis of patients with MUC16 cytoplasmic expression was significantly poorer than those without this expression. Multivariate survival analysis revealed that MUC16 cytoplasmic expression was a significant independent predictor of a poor prognosis after adjusting for the effects of other prognostic factors (P=0.002). Conclusion Mucin expression profiles in EUS-FNA specimens have excellent diagnostic utility and are useful predictors of outcome in patients with PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.