BackgroundLaminaria japonica has frequently been used as a food supplement and drug in traditional oriental medicine. Among the major active constituents responsible for the bioactivities of L. japonica, fucoxanthin (FX) has been considered as a potential antioxidant. This study was conducted to examine the effects of L. japonica extract (LJE) or FX against oxidative stress on hepatocytes and to elucidate the overall their cellular mechanisms of the effects.MethodsWe constructed an in vitro model with the treatment of arachidonic acid (AA) + iron in HepG2 cells to stimulate the oxidative damage. The cells were pre-treated with LJE or FX for 1 h, and incubated with AA + iron. The effect on oxidative damage and cellular mechanisms of LJE or FX were assessed by cytological examination and several biochemical assays under conditions with or without kinase inhibitiors.ResultsLJE or FX pretreatment effectively blocked the pathological changes caused by AA + iron treatment, such as cell death, altered expression of apoptosis-related proteins such as procaspase-3 and poly (ADP-ribose) polymerase, and mitochondria dysfunction. Moreover, FX induced AMPK activation and AMPK inhibitor, compound C, partially reduced the protective effect of FX on mitochondria dysfunction. Consistent with AMPK activation, FX increased the protein levels of autophagic markers (LC3II and beclin-1) and the number of acridine orange stained cells, and decreased the phosphorylation of mTOR and simultaneously increased the phosphorylation of ULK1. And the inhibition of autophagy by 3-methylanine or bafilomycin A1 partially inhibited the protective effect of FX on mitochondria dysfunction.ConclusionThese findings suggest that FX have the function of being a hepatic protectant against oxidative damages through the AMPK pathway for the control of autophagy.
With the advent of digital healthcare without borders, enormous amounts of health information are captured and computerized. As healthcare quality largely depends on the reliability of given health information, personal health records should be accessible according to patients’ mobility, even as they travel or migrate to other countries. However, since all the health information is scattered in multiple places, it is an onerous task to carry it whenever people move to other countries. To effectively and efficiently utilize health information, interoperability, which is the ability of various healthcare information technologies to exchange, to interpret, and to use data, is needed. Hence, building a robust transnational health information infrastructure with clear interoperability guidelines considering heterogeneous aspects is necessary. For this purpose, this study proposes a Transnational Health Record framework, which enables access to personal health records anywhere. We review related literature and define level-specific interoperability guidelines, business processes, and requirements for the Transnational Health Record system framework.
ObjectivesTo develop effective ways of sharing patients' medical information, we developed a new medical information exchange system (MIES) based on a registry server, which enabled us to exchange different types of data generated by various systems.MethodsTo assure that patient's medical information can be effectively exchanged under different system environments, we adopted the standardized data transfer methods and terminologies suggested by the Center for Interoperable Electronic Healthcare Record (CIEHR) of Korea in order to guarantee interoperability. Regarding information security, MIES followed the security guidelines suggested by the CIEHR of Korea. This study aimed to develop essential security systems for the implementation of online services, such as encryption of communication, server security, database security, protection against hacking, contents, and network security.ResultsThe registry server managed information exchange as well as the registration information of the clinical document architecture (CDA) documents, and the CDA Transfer Server was used to locate and transmit the proper CDA document from the relevant repository. The CDA viewer showed the CDA documents via connection with the information systems of related hospitals.ConclusionsThis research chooses transfer items and defines document standards that follow CDA standards, such that exchange of CDA documents between different systems became possible through ebXML. The proposed MIES was designed as an independent central registry server model in order to guarantee the essential security of patients' medical information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.