We present, theoretically and experimentally, diffractionless optical beams displaying arbitrarily-shaped sub-diffraction-limited features known as superoscillations. We devise an analytic method to generate such beams and experimentally demonstrate optical superoscillations propagating without changing their intensity distribution for distances as large as 250 Rayleigh lengths. Finally, we find the general conditions on the fraction of power that can be carried by these superoscillations as function of their spatial extent and their Fourier decomposition. Fundamentally, these new type of beams can be utilized to carry sub-wavelength information for very large distances.
Low frequency Raman spectroscopy resolves the slow vibrations resulting from collective motions of molecular structures. This frequency region is extremely challenging to access via other multidimensional methods such as 2D-IR. In this paper, we describe a new scheme which measures 2D Raman spectra in the low frequency regime. We separate the pulse into a spectrally shaped pump and a transform-limited probe, which can be distinguished by their polarization states. Low frequency 2D Raman spectra in liquid tetrabromoethane are presented, revealing coupling dynamics at frequencies as low as 115 cm−1. The experimental results are supported by numerical simulations which replicate the key features of the measurement. This method opens the door for the deeper exploration of vibrational energy surfaces in complex molecular structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.