Neutrosophy (neutrosophic logic) is used to represent uncertain, indeterminate, and inconsistent information available in the real world. This article proposes a method to provide more sensitivity and precision to indeterminacy, by classifying the indeterminate concept/value into two based on membership: one as indeterminacy leaning towards truth membership and the other as indeterminacy leaning towards false membership. This paper introduces a modified form of a neutrosophic set, called Double-Valued Neutrosophic Set (DVNS), which has these two distinct indeterminate values. Its related properties and axioms are defined and illustrated in this paper. An important role is played by clustering in several fields of research in the form of data mining, pattern recognition, and machine learning. DVNS is better equipped at dealing with indeterminate and inconsistent information, with more accuracy, than the Single-Valued Neutrosophic Set, which fuzzy sets and intuitionistic fuzzy sets are incapable of. A generalised distance measure between DVNSs and the related distance matrix is defined, based on which a clustering algorithm is constructed. This article proposes a Double-Valued Neutrosophic Minimum Spanning Tree (DVN-MST) clustering algorithm, to cluster the data represented by double-valued neutrosophic information. Illustrative examples are given to demonstrate the applications and effectiveness of this clustering algorithm. A comparative study of the DVN-MST clustering algorithm with other clustering algorithms like Single-Valued Neutrosophic Minimum Spanning Tree, Intuitionistic Fuzzy Minimum Spanning Tree, and Fuzzy Minimum Spanning Tree is carried out.
The neutrosophic triplets in neutrosophic rings Q ∪ I and R ∪ I are investigated in this paper. However, non-trivial neutrosophic triplets are not found in Z ∪ I . In the neutrosophic ring of integers Z \ {0, 1}, no element has inverse in Z. It is proved that these rings can contain only three types of neutrosophic triplets, these collections are distinct, and these collections form a torsion free abelian group as triplets under component wise product. However, these collections are not even closed under component wise addition.
In complex rings or complex fields, the notion of imaginary element i with i 2 = − 1 or the complex number i is included, while, in the neutrosophic rings, the indeterminate element I where I 2 = I is included. The neutrosophic ring ⟨ R ∪ I ⟩ is also a ring generated by R and I under the operations of R. In this paper we obtain a characterization theorem for a semi-idempotent to be in ⟨ Z p ∪ I ⟩ , the neutrosophic ring of modulo integers, where p a prime. Here, we discuss only about neutrosophic semi-idempotents in these neutrosophic rings. Several interesting properties about them are also derived and some open problems are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.