Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB receptors from astroglial cells (GFAP-CB-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB receptors increased intracellular astroglial Ca levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.
Our ID-LC-MS/MS method proved to be reliable and sensitive in revealing steroid circulating concentrations in adults and in highlighting the limits of routine immunoassays at low concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.