We live in a computerized and networked society where many of our actions leave a digital trace and affect other people’s actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that search engine traffic (i.e., the number of requests submitted by users to search engines on the www) can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful examples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that daily trading volumes of stocks traded in NASDAQ-100 are correlated with daily volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www.
No abstract
In many cases, when browsing the Web users are searching for specific information or answers to concrete questions. Sometimes, though, users find unexpected, yet interesting and useful results, and are encouraged to explore further. What makes a result serendipitous? We propose to answer this question by exploring the potential of entities extracted from two sources of user-generated content -Wikipedia, a user-curated online encyclopedia, and Yahoo! Answers, a more unconstrained question/answering forum -in promoting serendipitous search. In this work, the content of each data source is represented as an entity network, which is further enriched with metadata about sentiment, writing quality, and topical category. We devise an algorithm based on lazy random walk with restart to retrieve entity recommendations from the networks. We show that our method provides novel results from both datasets, compared to standard web search engines. However, unlike previous research, we find that choosing highly emotional entities does not increase user interest for many categories of entities, suggesting a more complex relationship between topic matter and the desirable metadata attributes in serendipitous search.
Recently, a new temporal dataset has been made public:it is made of a series of twelve 100M pages snapshots of the .uk domain [2]. The Web graphs of the twelve snapshots have been merged into a single time-aware graph that provide constant-time access to temporal information. In this paper we present the first statistical analysis performed on this graph, with the goal of checking whether the information contained in the graph is reliable (i.e., whether it depends essentially on appearance and disappearance of pages and links, or on the crawler behaviour). We perform a number of tests that show that the graph is actually reliable, and provide the first public data on the evolution of the Web that use a large scale and a significant diversity in the sites considered.
Defining a measure of similarity between queries is an interesting and difficult problem. A reliable query-similarity measure can be used in a variety of applications such as query recommendation, query expansion, and advertising.In this paper, we exploit the information present in query logs in order to develop a measure of semantic similarity between queries. Our approach relies on the concept of the query-flow graph, a graph-based representation of a query log. The query-flow graph aggregates query reformulations from many users: nodes in the graph represent queries, and two queries are connected if they are likely to appear as part of the same search goal. Our query-similarity measure is obtained by projecting the graph (or appropriate subgraphs extracted from it) on a low-dimensional Euclidean space. Our experiments show that the measure we obtain captures a notion of semantic similarity between queries and it is useful for diversifying query recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.