An overview concerning the study of mediaeval wall paintings published in the last 20 years was described and a change in the use of diagnostic techniques has been emphasized. Indeed, actually they are used especially for the study of decay products with the aim of suggesting the best conservation method.
This work reports the results of an extensive study carried out on the wall paintings preserved inside the Saint Stephen's chapel in Montani (Val Venosta, Bozen, Italy), by means of μ‐Raman spectroscopy, portable X‐ray fluorescence (XRF) spectrometry, and powder X‐ray diffraction, in order to characterize materials and their alteration products that cause the blackening of paintings. In situ XRF analysis allowed identifying the areas of interest where the blackening appeared. The complementary analytical techniques allowed reconstructing a chromatic palette used by the artists that includes expensive pigments, such as lapis lazuli and cinnabar, indicating a wealthy client. Raman spectra at very low power recorded on blackened degraded samples showed the presence of a mixture of the two polymorphs of lead (IV) dioxide, plattnerite (β‐PbO2), and scrutinyte (α‐PbO2), as degradation products of lead‐based pigments. On these samples, no evidence of white lead was found, although a white lead conversion treatment had been applied on the paintings. The degradation of red lead (Pb3O4) into a mixture of plattnerite, scrutinyte, and anglesite (PbSO4) was demonstrated in some darkened samples. Furthermore, the degradation of haematite (Fe2O3) with the formation of magnetite (Fe3O4) and coquimbite (Fe2(SO4)3·9H2O) was also identified as responsible for the blackening of the paintings. The influence of original materials and environmental and anthropogenic factors such as the valley's orography and the presence of contaminating agents (SOx) is discussed to explain the decay phenomena.
The present work concerns the study of the phase transition of plattnerite [β-PbO2 lead (IV) oxide]-based samples when they are analysed by Raman spectroscopy. The laser-induced degradation process was carried out either on historical painting samples, where plattnerite was present as a degradation product of lead-based pigments, or commercial plattnerite samples as powder and pellets. The Raman spectra of plattnerite taken at low excitation power, to avoid phase transformations, are reported up to low wavenumbers, and they were characterized by the features at 159, 380, 515 and 653 cm−1 and a shoulder at 540 cm−1. The degradation of plattnerite was induced by increasing the laser power on the sample, and the formation of its secondary products red lead (Pb3O4), litharge (α-PbO) and massicot (β-PbO), when varying the laser power, is discussed. The analyses were performed in a controlled condition by coupling the Raman spectrometer to a temperature-controlled stage (Linkam THMS600- Renishaw), which allows for varying the sample temperature (from room temperature up to 600 °C) and keeping it constant inside the stage during the analysis. In this way, commercial plattnerite samples were heated by increasing the cell temperature to verify the temperature range at which the phase transitions of lead dioxide occur. In addition, thanks to the construction of temperature ramps, all the degradation pathways were shown, and other lead compounds were identified, generated by the laser power contribution. A different behaviour was found between pigments from historical painting samples and commercial samples under the effect of the laser. This information could be useful in order to recognize their nature when they are found in cultural heritage materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.